Skip to main content
Log in

Application of particle tracking velocimetry for studying the dispersion of particles in a turbulent gas flow

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A method for the determination of the dispersion of solid particles in a turbulent gas flow has been presented. This method is based on recording the particle trajectories with a high-speed video camera on separate regions of a flow, located at various distances from a point source of particles, and the subsequent processing of the frames. This method has been used to study the dispersion of solid particles under the conditions of turbulence in a horizontal channel with a rectangular cross section of 200 × 400 mm for a measuring region length of 2 m. Turbulence of the gas flow was generated by means of a grid with square meshes of the size of 16 mm. The average velocity of the gas flow in the measuring region was 5.1 m/s. The dispersion of 36-, 56- and 128-micron glass particles of spherical shape was studied in a region 450 mm long from the point source of particles. It has been shown that the dispersion of these particles in the direction of the action of the gravity force is larger than their dispersion in the perpendicular direction to the gravity force. The results of this study have shown that an increase in the size of particles leads to a decrease in the dispersion at small flight times of the particles (short-time dispersion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, G.I., Proc. London Math. Soc., 1922, vol. s2-20, no. 1, p. 196.

    Article  Google Scholar 

  2. Wells, M.R. and Stock, D.E., J. Fluid Mech., 1983, vol. 136, p. 31.

    Article  ADS  Google Scholar 

  3. Wang, L.-P. and Stock, D.E., J. Atmos. Sci., 1993, vol. 50, no. 13, p. 1897.

    Article  ADS  Google Scholar 

  4. Tchen, C.M., Mededeelingen Laboratorium voor Aeroen Hydrodynamica der Technische Hogeschool, 1947, no. 51, p. 125.

  5. Friedlander, S.K., AIChE J., 1957, vol. 3, no. 3, p. 381.

    Article  Google Scholar 

  6. Yudine, M.I., Adv. Geophys., 1959, vol. 6, p. 185.

    Article  MathSciNet  ADS  Google Scholar 

  7. Csanady, G.T., J. Atmos. Sci., 1963, vol. 20, p. 201.

    Article  ADS  Google Scholar 

  8. Reeks, M.W., J. Fluid Mech., 1977, vol. 83, p. 529.

    Article  ADS  MATH  Google Scholar 

  9. Wang, L.-P. and Stock, D.E., in Proceedings of the Third International Symposium on Gas-Solid Flows, presented at the Joint ASCE/ASME Mechanics Conference, University of California, San Diego, La Jolla, California, July 9–12, 1989, New York (N.Y.): The American Society of Mechanical Engineers, 1989, p. 13.

    Google Scholar 

  10. Wang, L.-P. and Stock, D.E., Atmos. Environ., Part A, 1992, vol. 26, p. 1599.

    Article  Google Scholar 

  11. Graham, D.I., J. Fluids Eng., 1996, vol. 118, p. 819.

    Article  Google Scholar 

  12. Zaichik, L.I. and Beketov, A.I., High Temp., 2011, vol. 49, no. 5, p. 719.

    Article  Google Scholar 

  13. Lumley, J.L., J. Math. Phys., 1962, vol. 3, no. 2, p. 309.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Snyder, W.H. and Lumley, J.L., J. Fluid Mech., 1971, vol. 48, p. 41.

    Article  ADS  Google Scholar 

  15. Ferguson, J.R., PhD Dissertation, Pullman: Washington State University, 1986.

  16. Maquet, C., Trinite, M., and Ledoux, M., Part. Part. Syst. Charact., 1990, vol. 7, nos. 1–4, p. 136.

    Article  Google Scholar 

  17. Kartushinsky, A.I., Rudi, Ü.A., Tisler, S.V., Hussainov, M.T., and Shcheglov, I.N., High Temp., 2009, vol. 47, no. 2, p. 272.

    Article  Google Scholar 

  18. Kennedy, I.M. and Moody, M.H., Exp. Therm. Fluid Sci., 1998, vol. 18, p. 11.

    Article  Google Scholar 

  19. Huang, X. and Stock, D.E., in Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vancouver, 1997, FEDSM97-3627 (CD-ROM).

  20. Yeh, F. and Lei, U., Phys. Fluids A, 1991, vol. 3, no. 11, p. 2571.

    Article  ADS  MATH  Google Scholar 

  21. Romano, G.P., Exp. Therm. Fluid Sci., 1998, vol. 17, p. 116.

    Article  Google Scholar 

  22. Espa, S. and Querzoli, G., Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, July 10–13, 2000. http://in3.dem.ist.utl.pt/downloads/lxlaser2000/.

  23. Ayyalasomayajula, S., Gylfason, A., Collins, L.R., Bodenschatz, E., and Warhaft, Z., Phys. Rev. Lett., 2006, vol. 97, no. 14, p. 144507.

    Article  ADS  Google Scholar 

  24. Maxey, M.R., J. Fluid Mech., 1987, vol. 174, p. 441.

    Article  ADS  MATH  Google Scholar 

  25. Frishman, F., Hussainov, M., Kartushinsky, A., and Mulgi, A., Int. J. Multiphase Flow, 1997, vol. 23, no. 4, p. 765.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Hussainov.

Additional information

Original Russian Text © A.I. Kartushinsky, Yu.A. Rudi, S.V. Tisler, M.T. Hussainov, I.N. Shcheglov, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 3, pp. 408–417.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kartushinsky, A.I., Rudi, Y.A., Tisler, S.V. et al. Application of particle tracking velocimetry for studying the dispersion of particles in a turbulent gas flow. High Temp 50, 381–390 (2012). https://doi.org/10.1134/S0018151X12030133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12030133

Keywords

Navigation