Skip to main content
Log in

Numerical modeling of heat exchange and turbulent flow of fluid within tubes at supercritical pressure

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

Modes of normal and degraded (with peaks of wall temperature) heat transfer are computed for the turbulent flow of carbon dioxide within a circular tube at supercritical pressure. Computation is based on a set of motion, continuity, and energy equations written under the approximation of a narrow channel. The turbulence model uses the Prandtl formula for the turbulent viscosity. The relationship for the travel length takes into account the effect of variation in the fluid properties and thermal acceleration through the tube section. Computation results for variation in the wall temperature along the tube fit the experimental data. An explanation is given for causes of the appearance of the peak on the wall temperature distribution along the tube in the area, where the fluid temperature is close to the pseudocritical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirillov, P.L., in Trudy 4-i Rossiiskoi natsional’noi konferentsii po teploobmenu (Proceedings of the Fourth Russian National Conference on Heat Transfer, Moscow, Russia, October 23–27, 2006), Moscow: Moscow Power Engineering Institute, 2006, vol. 1, p. 231.

    Google Scholar 

  2. Kurganov, V.A., in Trudy 4-i Rossiiskoi natsional’noi konferentsii po teploobmenu (Proceedings of the Fourth Russian National Conference on Heat Transfer, Moscow, Russia, October 23–27, 2006), Moscow: Moscow Power Engineering Institute, 2006, vol. 1, p. 83.

    Google Scholar 

  3. Shitsman, M.E., Teplofiz. Vys. Temp., 1963, vol. 1, no. 2, p. 267.

    Google Scholar 

  4. Petukhov, B.S., Adv. Heat Transfer, 1970, vol. 6, p. 503.

    Article  Google Scholar 

  5. Kurganov, V.A., Teploenergetika, 1998, no. 3, p. 2.

  6. Kurganov, V.A., Teploenergetika, 1998, no. 4, p. 35.

  7. Kirillov, P.L., Lozhkin, V.V., and Smirnov, A.M., Preprint of State Science Center of the Russian Federation-Leipunskii Institute for Physics and Power Engineering, Obninsk, 2003, no. 2988.

  8. Kim, J.K., Jeon, H.K., and Lee, J.S., Int. J. Heat Mass Transfer, 2007, vol. 50, p. 4908.

    Article  Google Scholar 

  9. Jiang, P.-X., Zhang, Y., and Shi, R.-F., Int. J. Heat Mass Transfer, 2008, vol. 51, p. 3052.

    Article  Google Scholar 

  10. Song, J.H., Kim, H.J., Kim, H., and Bae, Y.Y., J. Supercrit. Fluids, 2008, vol. 44, p. 164.

    Article  Google Scholar 

  11. Zhu, X., Bi, Q., Yang, D., and Chen, T., Nucl. Eng. Des., 2009, vol. 239, p. 381.

    Article  Google Scholar 

  12. Schnurr, N.M., Sastry, V.S., and Shapiro, A.B., J. Heat Transfer, 1976, vol. 98, p. 609.

    Article  Google Scholar 

  13. Petukhov, B.S., Vilenskii, V.D., and Medvetskaya, N.V., High Temp., 1977, vol. 15, no. 3, p. 464.

    Google Scholar 

  14. Popov, V.N., Belyaev, V.M., and Valueva, E.P., High Temp., 1978, vol. 15, no. 6, p. 1043.

    Google Scholar 

  15. Koshizuka, S., Takano, N., and Oka, Y., Int. J. Heat Mass Transfer, 1995, vol. 38, p. 3077.

    Article  Google Scholar 

  16. Kim, S.H., Kim, Y.I., Bae, Y.Y., and Cho, B.H., in Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP’04), Pittsburgh, Pennsylvania, United States, June 13–17, 2004, Pittsburgh, 2004, paper 4047, p. 1527.

  17. Roelofs, F., in Jahrestagung Kerntechnik (Annual Meeting on Nuclear Technology), Nürnberg, Germany, May 10–12, 2005, Nürnberg, 2005, p. 28.

  18. Cheng, X., Kuang, B., and Yang, Y.H., Nucl. Eng. Des., 2007, vol. 273, p. 240.

    Article  Google Scholar 

  19. Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T., and Yoshida, S., Int. J. Heat Mass Transfer, 1972, vol. 15, p. 2575.

    Article  Google Scholar 

  20. Popov, V.N., High Temp., 1978, vol. 15, no. 4, p. 670.

    Google Scholar 

  21. Popov, V.N. and Belyaev, V.M., High Temp., 1979, vol. 16, no. 5, p. 864.

    Google Scholar 

  22. Ankudinov, V.B., Cand. Sci. (Tech.) Dissertation, Moscow: Moscow Power Engineering Institute, 1983.

    Google Scholar 

  23. Kurganov, V.A., Ankudinov, V.B., and Kaptil’nyi, A.G., in Turbulentnyi teploobmen pri smeshannoi konvektsii v vertikal’nykh trubakh (Turbulent Heat Transfer with a Mixed Convection in Vertical Tubes), Polyakov, A.F., Ed., Moscow: Institute of High Temperatures of the Academy of Sciences of the Soviet Union, 1989, p. 95.

    Google Scholar 

  24. Kurganov, V.A. and Maslakova, I.V., High Temp., 2010, vol. 48, no. 4, p. 541.

    Article  Google Scholar 

  25. Altunin, V.V., Thermophysical Properties of Carbon Dioxide, London: Collets, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.P. Valueva, 2012, published in Teplofizika Vysokikh Temperatur, 2012, Vol. 50, No. 2, pp. 298–306.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valueva, E.P. Numerical modeling of heat exchange and turbulent flow of fluid within tubes at supercritical pressure. High Temp 50, 278–285 (2012). https://doi.org/10.1134/S0018151X12020204

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X12020204

Keywords

Navigation