Skip to main content
Log in

Numerical simulation of the flow and heat transfer in a downward turbulent gas-liquid flow in a pipe

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The paper presents the results of simulating the flow dynamics, friction, and heat transfer in a downward gas-liquid flow in a pipe. The mathematical model is based on the use of the Euler description for both phases. We have studied the influence of the change bubble size of the gas phase at the inlet, the gas volumetric flow rate ratio, and the initial temperature of the liquid and its velocity on the friction and heat transfer in a two-phase flow. The addition of the gas phase causes an increase in heat transfer and friction on the wall; as well, these effects become more noticeable with increasing void fraction and bubble diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, N.N. and Flemmer, R.L.C., Chem. Eng. Sci., 1984, vol. 39, p. 170.

    Article  Google Scholar 

  2. Wang, S.K., Lee, S.J., Jones, O.C., and Lahey, R.T., Jr., Int. J. Multiphase Flow, 1987, vol. 13, p. 327.

    Article  Google Scholar 

  3. Kashinsky, O.N. and Randin, V.V., Int. J. Multiphase Flow, 1999, vol. 25, p. 109.

    Article  MATH  Google Scholar 

  4. Hibiki, T., Goda, H., Kim, S., Ishii, M., and Uhle, J., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 1847.

    Article  Google Scholar 

  5. Sun, X., Paranjare, S., Ishii, M., and Uhle, J., Int. J. Exp. Therm. Fluid Sci., 2004, vol. 28, p. 317.

    Article  Google Scholar 

  6. Kashinsky, O.N., Randin, V.V., Lobanov, P.D., and Bogoslovtsev, G.V., Thermophys. Aeromech., 2005, vol. 12, no. 4, p. 597.

    Google Scholar 

  7. Kashinsky, O.N., Lobanov, P.D., Pakhomov, M.A., Randin, V.V., and Terekhov, V.I., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 3717.

    Article  Google Scholar 

  8. Zaichik, L.I., Skibin, A.P., and Solov’ev, S.L., High Temp., 2004, vol. 42, no. 1, p. 101.

    Article  Google Scholar 

  9. Lu, J. and Trygvasson, G., Phys. Fluids A, 2006, vol. 18, p. 103302.

    Article  ADS  Google Scholar 

  10. Terekhov, V.I. and Pakhomov, M.A., High Temp., 2008, vol. 46, no. 6, p. 854.

    Article  Google Scholar 

  11. Roitberg, E., Shemer, L., and Barnea, D., Chem. Eng. Sci., 2008, vol. 63, p. 3605.

    Article  Google Scholar 

  12. Sokolov, V.N., Domanskii, I.V., Davydov, I.V., and Tishin, V.B., Teor. Osn. Khim. Tekhnol., 1971, vol. 5, no. 3, p. 394.

    Google Scholar 

  13. Bobkov, V.P., Ibragimov, M.Kh., Tychinskii, N.A., and Fedotovskii, V.S., Inzh.-Fiz. Zh., 1973, vol. 24, no. 5, p. 781.

    Google Scholar 

  14. Sato, Y., Sadatomi, M., and Sekoguchi, K., Int. J. Multiphase Flow, 1981, vol. 7, p. 167.

    Article  MATH  Google Scholar 

  15. Kim, I.G., Cand. Sci. (Tech.) Dissertation, Novosibirsk: Kutateladze Institute of Thermophysics of the Siberian Branch of the Academy of Sciences of the Soviet Union, 1982.

    Google Scholar 

  16. Ganchev, B.G. and Peresad’ko, V.G., Inzh.-Fiz. Zh., 1985, vol. 49, no. 2, p. 181.

    Google Scholar 

  17. Marie, J.L., Int. J. Multiphase Flow, 1987, vol. 13, p. 309.

    Article  MATH  Google Scholar 

  18. Gorelik, R.S., Kashinskii, O.N., and Nakoryakov, V.E., High Temp., 1989, vol. 27, no. 2, p. 236.

    Google Scholar 

  19. Lahey, R.T. and Drew, R.T., Nucl. Eng. Des., 2001, vol. 204, p. 29.

    Article  Google Scholar 

  20. Mikielewicz, D., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 207.

    Article  MATH  Google Scholar 

  21. Cui, W., Li, L., Chen, Q., Liao, Q., and Jen, T.-C., Int. J. Heat Mass Transfer, 2006, vol. 49, p. 4417.

    Article  MATH  Google Scholar 

  22. Derevich, I.V., High Temp., 2002, vol. 40, no. 1, p. 78.

    Article  Google Scholar 

  23. Volkov, E.P., Zaichik, L.I., and Pershukov, V.A., Modelirovanie goreniya tverdogo topliva (Modeling of the Combustion of Solid Fuels), Moscow: Nauka, 1994.

    Google Scholar 

  24. Terekhov, V.I. and Pakhomov, M.A., Int. J. Therm. Sci., 2004, vol. 43, no. 6, p. 595.

    Article  Google Scholar 

  25. Loth, E., Prog. Energy Combust. Sci., 2000, vol. 26, p. 161.

    Article  Google Scholar 

  26. Carrica, P.M., Drew, D., Bonetto, F.., and Lahey, R.T., Int. J. Multiphase Flow, 1999, vol. 25, p. 257.

    Article  MATH  Google Scholar 

  27. Antal, S.P., Lahey, R.T., and Flaherty, J.F., Int. J. Multiphase Flow, 1991, vol. 17, p. 363.

    Article  Google Scholar 

  28. Hwang, C.B. and Lin, C.A., AIAA J., 1998, vol. 36, no. 1, p. 38.

    Article  ADS  MATH  Google Scholar 

  29. Lee, S.L., Lahey, R.T., and Jones, O.C., Jpn. J. Multiphase Flow, 1989, vol. 3, p. 335.

    Article  Google Scholar 

  30. Politano, M.S., Carrica, P.M., and Converit, J., Int. J. Multiphase Flow, 2003, vol. 29, p. 1153.

    Article  MATH  Google Scholar 

  31. Terekhov, V.I. and Pakhomov, M.A., Thermophys. Aeromech., 2008, vol. 15, no. 4, p. 589.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Pakhomov, V.I. Terekhov, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 5, pp. 737–744.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakhomov, M.A., Terekhov, V.I. Numerical simulation of the flow and heat transfer in a downward turbulent gas-liquid flow in a pipe. High Temp 49, 712–718 (2011). https://doi.org/10.1134/S0018151X11050166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11050166

Keywords

Navigation