Skip to main content
Log in

Two-dimensional kinetic model of a short high-current vacuum arc discharge

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

A two-dimensional kinetic model of a short high-current vacuum arc discharge has been developed in which magnetized electrons move in the hydrodynamic regime and fast cathode ions move in the free-flight regime in a two-dimensional electric field. The model includes the distribution of ions over the emission angles at the cathode boundary of the plasma. A method has been proposed for calculating the distribution of the plasma density in the gap. The two-dimensional distributions of the plasma density, electric field, discharge current density, and trajectories of ions in an external longitudinal magnetic field have been calculated. It has been shown that ion trajectories intersect each other and some ion trajectories return to the cathode. The number of ion trajectories reaching the anode decreases with a decrease in the external magnetic field. The ion “starvation” effect appears near the anode and can lead to the violation of steady-state current transfer and to the formation of an anode spot. It has been found that the kinetic description of the motion of ions does not indicate the appearance of a shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilis, I., Keidar, M., Boxman, R.L., and Goldsmith, S. J. Appl. Phys., 1998, vol. 83, no. 2, p. 709.

    Article  ADS  Google Scholar 

  2. Shmelev, D., in Proceedings of the 19th International Symposium on Discharges and Electrical Insulation in Vacuum, Xi’an, China, September 18–22, 2000, p. 214.

  3. Schade, E. and Shmelev, D., IEEE Trans. Plasma Sci., 2003, vol. 31, no. 5, p. 890.

    Article  ADS  Google Scholar 

  4. Wang, L., Jia, S., Shi, Z., and Rong, M., J. Phys. D: Appl. Phys., 2005, vol. 38, no. 3, p. 1034.

    Article  ADS  Google Scholar 

  5. Londer, Ya.I. and Ul’yanov, K.N., Teplofiz. Vys. Temp., 2005, vol. 43, no. 6, p. 845 [High Temp. (Engl. Transl.), 2005, vol. 43, no. 6, p. 843].

    Google Scholar 

  6. Londer, Ya.I. and Ulyanov, K.N., IEEE Trans. Plasma Sci., 2007, vol. 35, no. 4, p. 897.

    Article  ADS  Google Scholar 

  7. Wang, L., Jia, S., Shi, Z., Yang, D., and Zhang, L., in Proceedings of the 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, Bucharest, Romania, September 15–19, 2008, vol. 2, p. 329.

  8. Londer, Ya.I. and Ul’yanov, K.N., Teplofiz. Vys. Temp., 2003, vol. 41, no. 1, p. 5 [High Temp. (Engl. Transl.), 2003, vol. 41, no. 1, p. 1].

    Google Scholar 

  9. Wieckert, C. and Egli, W., IEEE Trans. Plasma Sci., 1989, vol. 17,no. 5, p. 649.

    Article  ADS  Google Scholar 

  10. Londer, Ya.I. and Ulyanov, K.N., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 8, p. 1362.

    Article  ADS  Google Scholar 

  11. Mesyats, G.A. and Barengol’ts, S.A., Usp. Fiz. Nauk, 2002, vol. 172, no. 10, p. 1113 [Phys.—Usp. (Engl. Transl.), 2002, vol. 45, no. 10, p. 1001].

    Article  Google Scholar 

  12. Ulyanov, K.N., Bogoslovskaya, A.B., Londer, Ya.I., et al., in Proceedings of the 14th International Symposium on Discharges and Electrical Insulation in Vacuum, Santa Fe, New Mexico, United States, September 17–20, 1990, p. 279.

  13. Ul’yanov, K.N., Teplofiz. Vys. Temp., 2003, vol. 41, no. 2, p. 167 [High Temp. (Engl. Transl.), 2003, vol. 41, no. 2, p. 135].

    Google Scholar 

  14. Boxman, R.L. and Goldsmith, S., J. Appl. Phys., 1983, vol. 54, no. 2, p. 592.

    Article  ADS  Google Scholar 

  15. Londer, Ya.I. and Ul’yanov, K.N., Teplofiz. Vys. Temp., 2001, vol. 39, no. 5, p. 699 [High Temp. (Engl. Transl.), 2001, vol. 39, no. 5, p. 647].

    Google Scholar 

  16. Londer, Ya.I. and Ul’yanov, K.N., Teplofiz. Vys. Temp., 2007, vol. 45, no. 4, p. 499 [High Temp. (Engl. Transl.), 2007, vol. 45, no. 4, p. 446].

    Google Scholar 

  17. Miller, H.C., IEEE Trans. Plasma Sci., 1985, vol. PS-13, no. 5, p. 242.

    Article  ADS  Google Scholar 

  18. Kutzner, J., in Proceedings of the 8th International Symposium on Discharges and Electrical Insulation in Vacuum, Albuquerque, New Mexico, United States, September 5–7, 1978, Paper A1.

  19. Cohen, Y., Boxman, R.L., and Goldsmith, S., IEEE Trans. Plasma Sci., 1989, vol. 17, no. 5, p. 713.

    Article  ADS  Google Scholar 

  20. Prozorov, E.F., Ul’yanov, K.N., and Fedorov, V.A., Teplofiz. Vys. Temp., 2009, vol. 47, no. 2, p. 175 [High Temp. (Engl. Transl.), 2009, vol. 47, no. 2, p. 158].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Ya.I. Londer, K.N. Ulyanov, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 3, pp. 323–332.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Londer, Y.I., Ulyanov, K.N. Two-dimensional kinetic model of a short high-current vacuum arc discharge. High Temp 49, 315–324 (2011). https://doi.org/10.1134/S0018151X11030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11030102

Keywords

Navigation