Skip to main content
Log in

Influence of surface microwave discharge on ignition of high-speed propane-air flows

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Ignition of supersonic propane-air flow under conditions of low-temperature plasma of surface microwave discharge is experimentally studied. We show that both rich and poor mixtures ignite, and the combustion intensity is maximal for the stoichiometric mixture. The dependence of the supersonic propaneair flow ignition time on the reduced electric field, E/n, under conditions of nonequilibrium gas-discharge plasma is experimentally obtained. The induction period is shown to decrease from 1 ms to 5 μs with the increase in E/n from 40 to 200 Td. The propagation velocity of the combustion front boundary (depending on the equivalent mixture ratio and the input microwave power) is maximal for the stoichiometric mixture and reaches 160 m/s at E/n = 150 Td. Under these conditions, the combustion temperature is about 3000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semenov, N.N., Tsepnye reaktsii (Chain Reactions), Moscow: Nauka, 1986.

    Google Scholar 

  2. Semenov, N.N., O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (On Some Problems of the Chemical Kinetics and Reactivity), Moscow: Academy of Sciences of the Soviet Union, 1958.

    Google Scholar 

  3. Bozhenkov, S.A., Starikovskaya, S.M., and Starikovskii, A.Yu., Nanosecond Gas Discharge Ignition of H2- and CH4-Containing Mixtures, Combust. Flame, 2003, vol. 133, p. 133.

    Article  Google Scholar 

  4. Starikovskaya, S.M., Plasma-Assisted Ignition and Combustion, J. Phys. D: Appl. Phys, 2006, vol. 39, p. R265.

    Article  ADS  Google Scholar 

  5. Starikovskii, A.Y., Anikin, N.B., Kosarev, I.N., Mintoussov, E., Nudnova, M., Rakitin, A., Roupassov, D., Starikovskaia, S., and Zhukov, V., Nanosecond-Pulsed Discharges for Plasma-Assisted Combustion and Aerodynamics, J. Propul. Power, 2008, vol. 24, no. 6, p. 1182.

    Article  Google Scholar 

  6. Adamovich, I.V., Lempert, W.R., Rich, J., Utkin, Yu., and Nishihara, M., Repetitively Pulsed Nonequilibrium Plasmas for Magnetohydrodynamic Flow Control and Plasma-Assisted Combustion, J. Propul. Power, 2008, vol. 24, no. 6, p. 1198.

    Article  Google Scholar 

  7. Dutta, A., Choi, I., Uddi, M., Mintusov, E., Erofeev, A., Yin, Z., Lempert, W., and Adamovich, I., Cavity Flow Ignition and Flameholding in Ethylene-Air by a Repetitively Pulsed Nanosecond Discharge, AIAA Pap., 2009, vol. 2009, p. 821.

    Google Scholar 

  8. Bityurin, V.A., Optimization of Plasma Generators for Plasma-Assisted Combustion, AIAA Pap., 2001, vol. 2001, p. 2874.

    Google Scholar 

  9. Bocharov, A., Bityurin, V., Klement’eva, I., and Klimov, A., Experimental and Numerical Study of MHD-Assisted Mixing and Combustion, AIAA Pap., 2006, vol. 2006, p. 1009.

    Google Scholar 

  10. Kochetov, I.V., Napartovich, A.P., and Leonov, S.B., Plasma-Assisted Ignition of Combustion in a Supersonic Flow of Fuel-Air Mixtures: Simulation Problems, Khim. Vys. Energ., 2006, vol. 40, no. 2, p. 1 [High Energy Chem. (Engl. Transl.), 2006, vol. 40, no. 2, p. 98].

    Google Scholar 

  11. Kossyi, I.A., Microwave Torch as a Tool for an Airflow Chemical Transformation, AIAA Pap., 2007, vol. 2007, p. 429.

    Google Scholar 

  12. Vinogradov, V.A., Shikhman, Y.M., Kossiy, I.A., Gritsinin, S., and Davidov, A., Effect of Input Energy Level on Ignition Performance of MW Surface Discharge Spark Plug, AIAA Pap., 2009, vol. 2009, p. 494.

    Google Scholar 

  13. Esakov, I., Grachev, L., Khodataev, K., and Van Wie, D., Experiments on Propane Ignition in High-Speed Airflow Using a Deeply Undercritical Microwave Discharge, AIAA Pap., 2004, vol. 2004, p. 840.

    Google Scholar 

  14. Khodataev, K.V., Various Types of Initiators for Attached Undercritical MW Discharge Ignition, AIAA Pap., 2007, vol. 2007, p. 431.

    Google Scholar 

  15. Shibkov, V.M., Vinogradov, D.A., Voskanyan, A.V., Ershov, A.P., Timofeev, I.B., Shibkova, L.V., and Chernikov, V.A., Surface Microwave Discharge in a Supersonic Air Flow, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., 2000, vol. 41, no. 6, p. 64.

    Google Scholar 

  16. Shibkov, V.M., Chernikov, V.A., Ershov, A.P., Dvinin, S.A., Raffoul, Ch.N., Shibkova, L.V., Timofeev, I.B., Van Wie, D.M., Vinogradov, D.A., and Voskanyan, A.V., Surface Microwave Discharge in Supersonic Airflow, AIAA Pap., 2001, vol. 2001, p. 3087.

    Google Scholar 

  17. Shibkov, V.M., Chernikov, V.A., Dvinin, S.A., Ershov, A.P., Shibkova, L.V., Timofeev, I.B., Vinogradov, D.A., and Voskanyan, A.V., Dense Large-Diameter Uniform Plasma of a Surface Microwave Discharge, in Proceedings of the Fifteenth International Symposium on Plasma Chemistry (ISPC-15), GREMI, CNRS/University of Orleans, Orleans, France, July 9–13, 2001, Bouchoule, A., Pouvesle, J.M., Tholmann, A.L., Bauchire, J.M., and Roberts, E., Eds., Orleans, 2001, vol. 1, p. 179.

  18. Shibkov, V.M., Chernikov, A.V., Chernikov, V.A., Ershov, A.P., and Shibkova, L.V., Surface Microwave Discharge on Dielectric Body in a Supersonic Flow of Air, in Microwave Discharges: Fundamentals and Applications, Moscow: Yanus-K, 2001, p. 145.

    Google Scholar 

  19. Shibkov, V.M., Ershov, A.P., Chernikov, V.A., and Shibkova, L.V., Microwave Discharge on the Surface of a Dielectric Antenna, Zh. Tekh. Fiz., 2005, vol. 75, no. 4, p. 67 [Tech. Phys. (Engl. Transl.), 2005, vol. 50, no. 4, p. 455].

    Google Scholar 

  20. Shibkov, V.M., Dvinin, S.A., Ershov, A.P., and Shibkova, L.V., Mechanisms of Microwave Surface Discharge Propagation, Zh. Tekh. Fiz., 2005, vol. 75, no. 4, p. 74 [Tech. Phys. (Engl. Transl.), 2005, vol. 50, no. 4, p. 462].

    Google Scholar 

  21. Dvinin, S.A., Shibkov, V.M., and Mikheev, V.V., On the Theory of Microwave Discharges Excited on the Surface of a Dielectric Antenna, Fiz. Plazmy, 2006, vol. 32, no. 7, p. 654 [Plasma Phys. Rep. (Engl. Transl.), 2006, vol. 32, no. 7, p. 601].

    Google Scholar 

  22. Shibkov, V.M., Dvinin, S.A., Ershov, A.P., Konstantinovskii, R.S., Surkont, O.S., Chernikov, V.A., and Shibkova, L.V., Surface Microwave Discharges in Air, Fiz. Plazmy, 2007, vol. 33, no. 1, p. 77 [Plasma Phys. Rep. (Engl. Transl.), 2007, vol. 33, no. 1, p. 72].

    Google Scholar 

  23. Shibkova, L.V., Surface Microwave Discharge at High Pressures in Air, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 2007, vol. 48, no. 5, p. 62.

    Google Scholar 

  24. Shibkov, V.M., Aleksandrov, A.F., Ershov, A.P., Logunov, A.A., Surkont, O.S., and Chernikov, V.A., Ignition of a Supersonic Flow of Carbon Fuel under the Conditions of Microwave Discharges, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 2004, vol. 45, no. 5, p. 67.

    Google Scholar 

  25. Shibkov, V.M., Aleksandrov, A.F., Ershov, A.P., Timofeev, I.B., Chernikov, V.A., and Shibkova, L.V., Freely Localized Microwave Discharge in a Supersonic Gas Flow, Fiz. Plazmy, 2005, vol. 31, no. 9, p. 857 [Plasma Phys. Rep. (Engl. Transl.), 2005, vol. 31, no. 9, p. 795].

    Google Scholar 

  26. Shibkov, V.M., Abramova, A.D., Chernikov, V.A., Ershov, A., Gromov, V., Karachev, A., Konstantinovskij, R., Timofeev, I., and Voskanyan, A., Microwave Discharges in Supersonic Plasma Aerodynamics, AIAA Pap., 2004, vol. 2004, p. 513.

    Google Scholar 

  27. Shibkov, V.M., Alexandrov, A.F., Chernikov, A.V., Ershov, A., Karachev, A., Konstantinovskij, R., and Timofeev, I., Influence of Surface Microwave Discharge on the Characteristics of Supersonic Flow near Streamlined Body, AIAA Pap., 2005, vol., 2005, p. 779.

    Google Scholar 

  28. Shibkova, L.V., Ignition of Alcohol under Conditions of Surface Microwave Discharge in Air, Preprint of the Physical Faculty of the Moscow State University, Moscow, 2007, no. 4.

  29. Shibkova, L.V., Physical Processes in a Moving Plasma of Multicomponent Inactive and Chemically Active Mixtures, Doctoral Dissertation in Mathematical Physics, Moscow: Scientific Association for High Temperatures of the Russian Academy of Sciences, 2007.

    Google Scholar 

  30. Aleksandrov, A.F., Shibkov, V.M., and Shibkova, L.V., Ignition of High-Speed Air-Hydrocarbon Flows under the Conditions of a Surface Microwave Discharge, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 2008, vol. 63, no. 5, p. 68.

    Google Scholar 

  31. Aleksandrov, A.F., Shibkov, V.M., and Shibkova, L.V., Ignition of Hydrocarbon Films under the Conditions of Surface Microwave Discharge, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., 2008, vol. 63, no. 6, p. 65.

    Google Scholar 

  32. Shibkov, V.M., Aleksandrov, A.F., Chernikov, V.A., Ershov, A., and Shibkova, L., Microwave and Direct-Current Discharges in High-Speed Flow: Fundamentals and Application to Ignition, J. Propul. Power, 2009, vol. 25, no. 1, p. 123.

    Article  Google Scholar 

  33. Shibkov, V.M., Gromov, V.G., and Konstantinovskij, R.S., Influence of Gas Discharge Plasma on Combustion of a High-Speed Hydrocarbon Flow, in Advanced Combustion and Aerothermal Technologies: Environmental Protection and Pollution Reductions, Syred, N. and Khalatov, A., Eds., New York (United States): Springer, 2007, p. 413.

    Chapter  Google Scholar 

  34. Konstantinovskii, R.S., Shibkov, V.M., and Shibkova, L.V., Effect of a Gas Discharge on the Ignition in the Hydrogen-Oxygen System, Kinet. Katal., 2005, vol. 46, no. 6, p. 821 [Kinet. Catal. (Engl. Transl.), 2005, vol. 46, no. 6, p. 775].

    Article  Google Scholar 

  35. Räuchle, E., Duo-Plasmaline, A Surface Wave Sustained Linearly Extended Discharge, J. Phys. IV (France), 1998, vol. 8, no. PR7, p. Pr7–108.

    Google Scholar 

  36. Toshizo Shirai, Tatsuo Tabata, Hiroyuki Tawara, and Yukikazu Itikawa, Analytic Cross Sections for Electron Collisions with Hydrocarbons: CH4, C2H6, C2H4, C2H2, C3H8, and C3H, At. Data Nucl. Data Tables, 2002, vol. 80, no. 2, p. 147.

    Article  Google Scholar 

  37. Brunger, M.J. and Buckman, S.J., Electron-Molecule Scattering Cross-Section: I. Experimental Techniques and Data for Diatomic Molecules, Phys. Rep., 2002, no. 357, p. 215.

  38. Sobrinho, A.A., Machado, L.E., Michelin, S.E., Mu-Tao, L., and Brescansin, L.M., Elastic and Excitation Cross Sections for Electron-Formaldehyde Collisions, J. Mol. Struct.: THEOCHEM, 2001, vol. 539, nos. 1–3, p. 65.

    Article  Google Scholar 

  39. Dautov, N.G. and Starik, A.M., On the Problem of Choosing a Kinetic Scheme for the Homogeneous Reaction of Methane with Air, Kinet. Katal., 1997, vol. 38, no. 2, p. 207 [Kinet. Catal. (Engl. Transl.), 1997, vol. 38, no. 2, p. 185].

    Google Scholar 

  40. Starik, A.M., Titova, N.S., and Yanovskii, L.S., Kinetics of the Oxidation of the Products from the Thermal Destruction of C3H8 and n-C4H10 in the Mixtures with Air, Kinet. Katal., 1999, vol. 40, no. 1, p. 11 [Kinet. Catal. (Engl. Transl.), 1999, vol. 40, no. 1, p. 7].

    Google Scholar 

  41. Starik, A.M. and Titova, N.S., Kinetics of Detonation Initiation in the Supersonic Flow of the H2 + O2 (Air) Mixture in O2 Molecule Excitation by Resonance Laser Radiation, Kinet. Katal., 2003, vol. 44, no. 1, p. 35 [Kinet. Catal. (Engl. Transl.), 2003, vol. 44, no. 1, p. 28].

    Article  Google Scholar 

  42. Matveev, A.A. and Silakov, V.P., Non-Equilibrium Kinetic Processes in Low-Temperature Hydrogen Plasma, Preprint of the General Physics Institute of the Russian Academy of Science, Moscow, 1994, no. 8.

  43. Matveyev, A.A. and Silakov, V.P., Theoretical Study of the Role of Ultraviolet Radiation of the Non-Equilibrium Plasma in the Dynamics of the Microwave Discharge in Molecular Nitrogen, Preprint of the General Physics Institute of the Russian Academy of Science, Moscow, 1998, no. 7.

  44. Islamov, R.Sh., Kochetov, I.V., and Pevgov, V.G., Analysis of the Processes of Interaction of Electrons with Oxygen Molecules, Preprint of the P. N. Lebedev Physics Institute of the Academy of Sciences of the Soviet Union, Moscow, 1977, no. 169.

  45. Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnik (Thermodynamic Properties of Individual Substances: A Reference Book), Glushko, V.P., Gurvich, L.V., Bergman, G.A., Medvedev, V.A., Fachekuruzov, G.A., and Yungman, V.S., Eds., Moscow: Nauka, 1978–1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Shibkov, L.V. Shibkova, V.G. Gromov, A.A. Karachev, R.S. Konstantinovskii, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 163–176.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibkov, V.M., Shibkova, L.V., Gromov, V.G. et al. Influence of surface microwave discharge on ignition of high-speed propane-air flows. High Temp 49, 155–167 (2011). https://doi.org/10.1134/S0018151X11020143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11020143

Keywords

Navigation