Skip to main content
Log in

Collisional-radiative model of hydrogen low-temperature plasma: Processes and cross sections of electron-molecule collisions

  • Review
  • Published:
High Temperature Aims and scope

Abstract

The experimental and calculated cross sections of the interaction of electrons with hydrogen molecules are reviewed. A self-consistent set of cross sections that is reasonable for use in calculating the electron energy distribution function (EEDF) is determined. The processes affecting the EEDF and its moments are analyzed in a wide range of the reduced electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plasma Technology: Fundamentals and Applications, Capitelli, M. and Gorse, C., Eds., New York: Plenum, 1992.

    Google Scholar 

  2. Raizer, Yu.P., Shneider, M.N., and Yatsenko, N.A., Vysokochastotnyi emkostnyi razryad: Fizika. Tekhnika eksperimenta. Prilozheniya, Moscow: Nauka, 1995. Translated under the title Radio-Frequency Capacitive Discharges, Boca Raton: CRC Press, 1995.

    Google Scholar 

  3. Proceedings of the Sixth International Workshop “Strong Microwaves in Plasmas,” Nizhniy Novgorod, Russia, July 25–August 1, 2005, Litvak, A.G., Ed., Nizhniy Novgorod: Institute of Applied Physics of the Russian Academy of Sciences, 2006.

    Google Scholar 

  4. Entsiklopediya nizkotemperaturnoi plazmy, Tom XI-5: Prikladnaya khimiya plazmy (Encyclopedia of Low-Temperature Plasma. Volume XI-5: Applied Chemistry of Plasma), Lebedev, Yu.A., Plate, N.A., and Fortov, V.E., Eds., Moscow: Yanus-K, 2005.

    Google Scholar 

  5. Entsiklopediya nizkotemperaturnoi plazmy. Tom VIII-1: Prikladnaya khimiya plazmy (Encyclopedia of Low-Temperature Plasma, Volume VIII-1: Applied Plasma Chemistry), Lebedev, Yu.A., Plate, N.A., and Fortov, V.E., Eds., Moscow: Yanus-K, 2005.

    Google Scholar 

  6. Nizkotemperaturnaya plazma (Low-Temperature Plasma), Polak, L.S., Sinyarev, G.B., Slovetskii, D.I., and Lebedev, Yu.A., Eds., Novosibirsk: Nauka, 1991, vol. 3.

    Google Scholar 

  7. IV Mezhdunarodnyi simpozium po teoreticheskoi i prikladnoi plazmokhimii, Ivanovo, Rossiya, 13–18 maya 2005: Sbornik trudov (Proceedings of the Fourth International Symposium on Theoretical and Applied Plasmochemistry, Ivanovo, Russia, May 13–18, 2005), Ivanovo: Ivanovo State University of Chemistry and Technology, 2005.

  8. Nizkotemperaturnaya plazma (Low-Temperature Plasma), Dautov, G.Yu., Timoshevskii, A.N., Uryukov, B.A., Alkhimov, A.P., Volchkov, E.P., Fomin, V.M., and Zasypkin, I. M., Eds., Novosibirsk: Nauka, 2004, vol. 20.

    Google Scholar 

  9. Entsiklopediya nizkotemperaturnoi plazmy. Tom III-2: Opticheskie svoistva nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma. Volume III-2: Optical Properties of Low-Temperature Plasma), Ochkin, V.N., Ed., Moscow: Yanus-K, 2009.

    Google Scholar 

  10. Griem, H.R., Plasma Spectroscopy, New York (United States): McGraw-Hill, 1964.

    Google Scholar 

  11. Entsiklopediya nizkotemperaturnoi plazmy. Tom V-1: Diagnostika plazmy. Chast’ I (Encyclopedia of Low-Temperature Plasma. Volume V-1: Plasma Diagnostics. Part I), Kolesnikov, V.N., Ed., Moscow: Yanus-K, 2006.

    Google Scholar 

  12. Plasma Diagnostic Techniques, Huddleston, R.H. and Leonard, S.L., Eds., New York (United States): Academic, 1965.

    Google Scholar 

  13. Plasma Diagnostics, Lochte-Holtgreven, W., Ed., Amsterdam (The Netherlands): North-Holland, 1968.

    Google Scholar 

  14. Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy, Moscow: Fizmatlit, 2006. Translated under the title Spectroscopy of Low-Temperature Plasma, New York: Wiley, 2009.

    Google Scholar 

  15. Nizkotemperaturnaya plazma (Low-Temperature Plasma), Ovsyannikov, A.A., Engel’sht, V.S., Lebedev, Yu.A., Abdrazakov, A., Amirov, R.Kh., Asanaliev, M.K., Asinovskii, E.I., Benilov, M.S., Vlasov, P.A., Zheenbaev, Zh.Zh., Ivanov, Yu.A., Klubnikin, V.S., Konavko, R.I., Lar’kina, L.T., Markovets, V.V., Ostrovskaya, G.V., Otorbaev, D.K., Ochkin, V.N., Panfilov, A.S., Samoilov, I.S., Samsonov, M.A., Sedel’nikov, A.I., Solonenko, O.P., Yatsenko, N.A., and Zhukov, M.F., Eds., Novosibirsk: Nauka, 1994, vol. 9.

    Google Scholar 

  16. Lelevkin, V.M. and Otorbaev, D.K., Eksperimental’nye metody i teoreticheskie modeli v fizike neravnovesnoi plazmy (Experimental Methods and Theoretical Models in the Physics of Nonequilibrium Plasma), Frunze, Kirgizia, Soviet Union: Ilim, 1988.

    Google Scholar 

  17. Opticheskaya pirometriya plazmy (Optical Pyrometry of Plasma), Sobolev, N.N., Ed., Moscow: Inostrannaya Literatura, 1960.

    Google Scholar 

  18. Raman Spectroscopy of Gases and Liquids, Weber, A., Ed., Berlin: Springer, 1979.

    Google Scholar 

  19. Druet, S.A. and Taran, J.P.E., CARS Spectroscopy, Prog. Quantum Electron., 1981, vol. 7, no. 1, p. 72.

    Article  Google Scholar 

  20. Demtroeder W., Laser Spectroscopy: Basic Concepts and Instrumentation, Berlin: Springer, 1981. Translated under the title Lazernaya spektroskopiya. Osnovnye printsipy i tekhnika eksperimenta, Moscow: Nauka, 1985.

    Google Scholar 

  21. Entsiklopediya nizkotemperaturnoi plazmy: Seriya B (Spravochnye prilozheniya, bazy i banki dannykh). Tom III-2: Termodinamicheskie, opticheskie i transportnye svoistva nizkotemperaturnoi plazmy. Chast’ 1: Opticheskie svoistva nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma: Series B (Reference Appendices, Databases, and Data Banks). Volume III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma. Part 1: Optical Properties of Low-Temperature Plasma), Ochkin, V.N., Ed., Moscow: Yanus-K, 2009.

    Google Scholar 

  22. Slovetskii, D.I., Mekhanizmy khimicheskikh reaktsii v neravnovesnoi plazme (Mechanisms of Chemical Reactions in a Nonequilibrium Plasma), Moscow: Nauka, 1977.

    Google Scholar 

  23. Slovetskii, D.I., A General Approach to Analysis of the Kinetics and Mechanism of Chemical Reactions in Plasmas, in Entsiklopediya nizkotemperaturnoi plazmy. Vvodnyi tom III (Encyclopedia of Low-Temperature Plasma: Introductory Volume III), Fortov, V.E., Ed., Moscow: Nauka/Interperiodika, 2000, p. 292.

    Google Scholar 

  24. Kochetov, I.V., Complete Plasma-Chemical Models of Processes in Nonequilibrium Plasmas, in Entsiklopediya nizkotemperaturnoi plazmy. Vvodnyi tom III (Encyclopedia of Low-Temperature Plasma: Introductory Volume III), Fortov, V.E., Ed., Moscow: Nauka/Interperiodika, 2000, p. 295.

    Google Scholar 

  25. Fiziko-khimicheskie protsessy v gazovoi dinamike. Spravochnik. Tom 1: Dinamika fiziko-khimicheskikh protsessov v gaze i plazme, Chernyi, G.G. and Losev, S.A., Eds., Moscow: Moscow State University, 1995. Translated under the title Physical and Chemical Processes in Gas Dynamics. Volume 1: Cross Sections and Rate Constants, Reston (Virginia, United States): American Institute of Aeronautics and Astronautics (AIAA), 2002.

    Google Scholar 

  26. Fiziko-khimicheskie protsessy v gazovoi dinamike. Spravochnik. Tom 2: Fiziko-khimicheskaya kinetika i termodinamika, Chernyi, G.G. and Losev, S.A., Eds., Moscow: Scientific-Publishing Center of Mechanics, 2002. Translated under the title Physical and Chemical Processes in Gas Dynamics. Volume 2: Physical and Chemical Kinetics and Thermodynamics of Gases and Plasmas, Reston: American Institute of Aeronautics and Astronautics (AIAA), 2004.

    Google Scholar 

  27. Gordiets, V.F., Osipov, A.I., and Shelepin, L.A., Kineticheskie protsessy v gazakh i molekulyarnye lazery, Moscow: Nauka, 1980. Translated under the title Kinetic Processes in Gases and Molecular Lasers, New York: Gordon and Breach, 1986.

    Google Scholar 

  28. Nonequilibrium Vibrational Kinetics, Capitelli, M., Ed., Berlin: Springer, 1986. Translated under the title Neravnovesnaya kolebatel’naya kinetika. Sbornik, Moscow: Mir, 1989.

    Google Scholar 

  29. Capitelli, M., Ferreira, C.M., Gordiets, B.F., and Osipov, A.I., Plasma Kinetics in Atmospheric Gases, in Springer Series on Atomic, Optical, and Plasma Physics, Berlin: Springer, 2000.

    Google Scholar 

  30. Lebedev, Yu.A. and Shakhatov, V.A., Kinetic Models in Optical Diagnostics of Nonequilibrium Gas Discharge Plasmas, in Entsiklopediya nizkotemperaturnoi plazmy: Seriya B (Spravochnye prilozheniya, bazy i banki dannykh). Tom III-2: Termodinamicheskie, opticheskie i transportnye svoistva nizkotemperaturnoi plazmy. Chast’ 1: Opticheskie svoistva nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma: Series B (Reference Appendices, Databases, and Data Banks). Volume III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma. Part 1: Optical Properties of Low-Temperature Plasma), Ochkin, V.N., Ed., Moscow: Yanus-K, 2009, p. 73.

    Google Scholar 

  31. Slovetskii, D.I., Mechanisms of Excitation of the Electronic Spectra of Atoms and Molecules in Nonequilibrium Low-Temperature Plasmas, in Entsiklopediya nizkotemperaturnoi plazmy: Seriya B (Spravochnye prilozheniya, bazy i banki dannykh). Tom III-2: Termodinamicheskie, opticheskie i transportnye svoistva nizkotemperaturnoi plazmy. Chast’ 1: Opticheskie svoistva nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma: Series B (Reference Appendices, Databases, and Data Banks). Volume III-2: Thermodynamic, Optical, and Transport Properties of Low-Temperature Plasma. Part 1: Optical Properties of Low-Temperature Plasma), Ochkin, V.N., Ed., Moscow: Yanus-K, 2009, p. 183.

    Google Scholar 

  32. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy, Moscow: Nauka, 1982. Translated under the title Kinetics of Nonequilibrium Low-Temperature Plasmas, New York: Kluwer, 1987.

    Google Scholar 

  33. Smith, K. and Thompson, R., Computer Modeling of Gas Lasers, New York: Plenum, 1978.

    Google Scholar 

  34. Morgan, W.L., Electron Collision Data for Plasma Chemistry Modeling, Adv. At., Mol., Opt. Phys., 2000, vol. 43, p. 79.

    Google Scholar 

  35. Gordeev, O.A. and Khmara, D.V., Codes for Kinetic Properties of Gas Charge Plasma, Mat. Model., 2009, vol. 13, no. 9, p. 3.

    Google Scholar 

  36. Shakhatov, V.A. and Gordeev, O.A., Investigation of the Glow and Contracted Discharge Plasmas in Nitrogen by Coherent Anti-Stokes Raman Spectroscopy, Optical Interferometry, and Numerical Simulation, Zh. Tekh. Fiz., 2005, vol. 75, no. 12, p. 56 [Tech. Phys. (Engl. Transl.), 2005, vol. 50, no. 12, p. 1592].

    Google Scholar 

  37. Gordeev, O.A., Lebedev, Yu.A., and Shakhatov, V.A., Principles of Diagnostics of Chemically Reactive Plasmas, in Entsiklopediya nizkotemperaturnoi plazmy. Tom V-1: Diagnostika plazmy. Chast’ I (Encyclopedia of Low-Temperature Plasma. Volume V-1: Plasma Diagnostics. Part I), Kolesnikov, V.N., Ed., Moscow: Yanus-K, 2006, p. 445.

    Google Scholar 

  38. Shakhatov, V.A. and Lebedev, Yu.A., Kinetics of Excitation of N2(A 3Σ +u , V A, N2(C 3Πu, V C), and N2(B 3Πg, V B) in Nitrogen Gas Discharge Plasmas as Studied by Means of Emission Spectroscopy and Computer Simulation, Khim. Vys. Energ., 2008, vol. 42, no. 3, p. 207 [High Energy Chem. (Engl. Transl.), 2008, vol. 42, no. 3, p. 170].

    Google Scholar 

  39. Cicala, G., De Tommaso, E., Raino, A.C., Lebedev, Yu.A., and Shakhatov, V.A., Study of Positive Column of Glow Discharge in Nitrogen by Optical Emission Spectroscopy and Numerical Simulation, Plasma Sources Sci. Technol., 2009, vol. 18, p. 025 032.

    Article  Google Scholar 

  40. Vereshchagin, K.A., Smirnov, V.V., and Shakhatov, V.A., CARS Study of the Vibrational Kinetics of Nitrogen Molecules in the Burning and Afterglow Stages of a Pulsed Discharge, Zh. Tekh. Fiz., 1997, vol. 67, no. 5, p. 34 [Tech. Phys. (Engl. Transl.), 1997, vol. 42, no. 5, p. 487].

    Google Scholar 

  41. Longo, S., Capitelli, M., and Diomede, E.P., Self-Consistent Particle Model of Discharge Plasmas in Hydrogen, Int. J. Multiscale Comput. Eng., 2006, vol. 4, no. 2, p. 233.

    Article  Google Scholar 

  42. Diomede, P., Longo, S., and Capitelli, M., Vibrational Excitation and Negative Ion Production in Radio-Frequency Parallel Plate H2 Plasmas, Eur. Phys. J. D, 2005, vol. 33, no. 2, p. 243.

    Article  ADS  Google Scholar 

  43. Hassouni, K., Lombardi, G., Gicquel, A., Capitelli, M., Shakhatov, V.A., and De Pascale, O., Nonequilibrium Vibrational Excitation of H2 in Radiofrequency Discharges: A Theoretical Approach Based on Coherent Anti-Stokes Raman Spectroscopy Measurements, Phys. Plasmas, 2005, vol. 12, no. 2, p. 5436.

    Google Scholar 

  44. Hassouni, K., Gicquel, A., and Capitelli, M., Self-Consistent Relaxation of the Electron Energy Distribution Function in Excited H2 Postdischarges, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, no. 3, p. 3741.

    Google Scholar 

  45. Lebedev, Yu.A. and Epstein, I.L., Simulation of Microwave Plasma in Hydrogen, J. Moscow Phys. Soc., 1995, vol. 5, p. 103.

    Google Scholar 

  46. Gorse, C., Capitelli, M., Bacal, M., Bretagne, J., and Laganá, A., Progress in the Non-Equilibrium Vibrational Kinetics of Hydrogen in Magnetic Multicusp H-Ion Sources, Chem. Phys., 1987, vol. 117, no. 2, p. 177.

    Article  Google Scholar 

  47. Scott, C.D., Farhat, S., Gicquel, A., Hassouni, K., and Lefebvre, M., Determining Electron Temperature and Density in a Hydrogen Microwave Plasma, J. Thermophys. Heat Transfer, 1996, vol. 10, no. 3, p. 426.

    Article  Google Scholar 

  48. Capitelli, M., Dilonardo, M., and Molinari, E., A Theoretical Calculation of Dissociation Rates of Molecular Hydrogen in Electrical Discharges, Chem. Phys., 1977, vol. 20, p. 417.

    Article  Google Scholar 

  49. Kossyi, I.A., Otorbaev, D.K., Silakov, V.P., and Chebotarev, A.V., Emission Spectra of Atomic Hydrogen in a Nonequilibrium Gas-Discharge Plasma, Fiz. Plazmy, 1998, vol. 24, no. 8, p. 761 [Plasma Phys. Rep. (Engl. Transl.), vol. 24, no. 8, p. 707].

    Google Scholar 

  50. Brovikova, I.N., Galiaskarov, E.G., Rybkin, V.V., and Bessarab, A.B., Kinetic Characteristics of Production and Loss of Hydrogen Atoms in the Positive Column of Glow Discharge in H2, Teplofiz. Vys. Temp., 1998, vol. 36, no. 5, p. 706 [High Temp. (Engl. Transl.), 1998 vol. 36, no. 5, p. 681].

    Google Scholar 

  51. Marques, L., Jolly, J., and Alves, L.L., Capacitively Coupled Radio-Frequency Hydrogen Discharges: The Role Kinetics, J. Appl. Phys., 2007, vol. 102, p. 063 305.

    Article  Google Scholar 

  52. Sergeev, P.A., Investigation of the Influence of Vibrationally Excited Molecules on Physicochemical Processes in Nonequilibrium Electric Charges in Diatomic Molecular Gases, Candidate’s Dissertation in Mathematical Physics, Moscow: Topchiev Institute of Petrochemical Synthesis of the Academy of Sciences of the Soviet Union, 1982.

    Google Scholar 

  53. Matveyev, A.A. and Silakov, V.P., Kinetic Processes in a Highly-Ionized Non-Equilibrium Hydrogen Plasma, Plasma Sources Sci. Technol., 1995, vol. 4, p. 606.

    Article  ADS  Google Scholar 

  54. Daniel, A., Kunc, J.A., and Kunc, E.A., Rate Coefficients for Some Collisional Processes in High-Current Hydrogen Discharges, IEEE Trans. Plasma Sci., 1983, vol. PS-11, no. 4, p. 266.

    ADS  Google Scholar 

  55. Morin, T.J. and Hawley, M.C., The Efficacy of Heating Low-Pressure H2 in a Microwave Discharge, Plasma Chem. Plasma Process., 1987, vol. 7, no. 2, p. 181.

    Article  Google Scholar 

  56. Baksht, F.G. and Ivanov, V.G., Dissociation Rate for Molecular Hydrogen near the Cathode in a Low-Temperature Plasma, Zh. Tekh. Fiz., 1986, vol. 56, no. 8, p. 1562 [Tech. Phys. (Engl. Transl.), 1986, vol. 31, no. 8, p. 926].

    Google Scholar 

  57. Semiokhin, I.A., Elementarnye protsessy v nizkotemperaturnoi plazme. Uchebnoe posobie (Elementary Processes in Low-Temperature Plasma: An Educational Manual), Moscow: Moscow State University, 1988.

    Google Scholar 

  58. Cacciatore, M., Capitelli, M., and Gorse, C., Non-Equilibrium Ionization of Molecular Hydrogen in Electrical Discharges, J. Phys. D: Appl. Phys, 1980, vol. 13, p. 575.

    Article  ADS  Google Scholar 

  59. Soon, W.H. and Kunc, J.A., Radiation of Partially Ionized Atomic Hydrogen, Phys. Fluids, 1990, vol. 2, no. 11, p. 2833.

    Article  Google Scholar 

  60. Kunc, J.A., Role of Atom-Atom Inelastic Collisions in Two-Temperature Nonequilibrium Plasmas, Phys. Fluids, 1987, vol. 30, p. 2255.

    Article  ADS  Google Scholar 

  61. Garscadden, A. and Nagpal, R., Non-Equilibrium Electronic and Vibrational Kinetics in H2-N2 and H2 Discharges, Plasma Sources Sci. Technol., 1998, vol. 4, p. 268.

    Article  ADS  Google Scholar 

  62. Gal’tsev, V.E., Dem’yanov, A.V., Kochetov, I.V., Pevgov, V.G., and Sharkov, V.F., Calculation of the Characteristics of Electric Discharge in Gaseous Mixtures Containing HCl and H2, Preprint of the Kurchatov Institute of Atomic Energy of the Academy of Sciences of the Soviet Union, Moscow, 1979, no. IAE-3156.

  63. Wunderlich, D., Dietrich, S., and Fantz, U., Application of a Collisional Radiative Model to Atomic Hydrogen for Diagnostic Purposes, J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, nos. 1–2, p. 62.

    Article  ADS  Google Scholar 

  64. Ivanov, Yu.A. and Polak, L.S., Energy Distribution of Electrons in a Low-Temperature Plasma, in Khimiya plazmy. Sbornik statei (A Collection of Papers on Plasma Chemistry), Smirnov, B.M., Ed., Moscow: Atomizdat, 1975, p. 161.

    Google Scholar 

  65. Zaitsev, V.V., Maksimov, A.I., and Svettsov, V.I., The Measurement of the Electron Energy Distribution Functions and Energy Characteristics of a Laminar Glow Discharge in He, H2, and N2, Zh. Tekh. Fiz., 1972, vol. 42, no. 9, p. 1894 [Sov. Phys. Tech. Phys. (Engl. Transl.), 1972, vol. 17, no. 9, p. 1517].

    Google Scholar 

  66. Zaitsev, V.V., Maksimov, A.I., and Svettsov, V.I., Radial Variation of the Electron Energy Distribution Functions in the Positive Column of a Glow Discharge in H2 and H2 + H2O, Zh. Tekh. Fiz., 1973, vol. 43, no. 9, p. 1925 [Sov. Phys. Tech. Phys. (Engl. Transl.), 1973, vol. 18, no. 9, p. 1215].

    Google Scholar 

  67. Kagan, Yu.M. and Mitrofanov, N.K., Energy Spectrum of Electrons in a Laminar Column of a Glow Discharge in Hydrogen, Zh. Tekh. Fiz., 1971, vol. 41, no. 10, p. 2065 [Sov. Phys. Tech. Phys. (Engl. Transl.), 1971, vol. 16, no. 10, p. 1636].

    Google Scholar 

  68. Boyd, R.L.F. and Twiddy, N.D., Electron Energy Distributions in Plasmas: II. Hydrogen, Proc. R. Soc. London, Ser. A, 1960, vol. 259, p. 145.

    Article  ADS  Google Scholar 

  69. Boyd, R.L.F. and Twiddy, N.D., Electron Energy Distributions in Plasmas: I., Proc. R. Soc. London, Ser. A, 1959, vol. 250, p. 53.

    Article  ADS  Google Scholar 

  70. Cherry, R.I. and Whitmore, T.D., The Measurement of Electron Energy Distribution Functions in Methane-Hydrogen Plasmas, Diamond Relat. Mater., 1995, vol. 4, no. 4, p. 524.

    Article  ADS  Google Scholar 

  71. Mahony, C.M.O., McFarland, J., Steen, P.G., and Graham, W.G., Structure Observed in Measured Electron Energy Distribution Functions in Capacitively Coupled Radio-Frequency Hydrogen Plasmas, Appl. Phys. Lett., 1999, vol. 75, no. 3, p. 331.

    Article  ADS  Google Scholar 

  72. Bailey, W.F. and Jones, R.G., Electron Energy Distributions in Magnetic Multicusp Hydrogen Discharges, AIP Conf. Proc., 1987, vol. 158, no. 1, p. 16.

    Article  ADS  Google Scholar 

  73. Mosbach, T., Katsch, H.-M., and Dobele, H.F., In Situ Diagnostics in Plasmas of Electronic-Ground-State Hydrogen Molecules in High Vibrational and Rotational States by Laser-Induced Fluorescence with Vacuum-Ultraviolet Radiation, Phys. Rev. Lett., 2000, vol. 85, no. 16, p. 3420.

    Article  ADS  Google Scholar 

  74. Hopkins, M.B., Bacal, M., and Graham, W.G., Enhanced Volume Production of Negative Ions in the Post Discharge of Multicusp Hydrogen Discharge, J. Appl. Phys., 1991, vol. 70, no. 4, p. 2009.

    Article  ADS  Google Scholar 

  75. Dieke, G.H., in Hydrogen Molecule Wavelength Tables, Crosswhite, H.M., Ed., New York: Wiley, 1972.

    Google Scholar 

  76. Frish, S.E., Opticheskie spektry atomov (Optical Spectra of Atoms), Moscow: Fizmatlit, 1963.

    Google Scholar 

  77. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (A Reference Book on Atomic and Molecular Physics), Moscow: Atomizdat, 1980.

    Google Scholar 

  78. Radtsig, A.A. and Smirnov, V.M., Parametry atomov i atomnykh ionov. Spravochnoe 2-e izdanie (A Reference Book on Parameters of Atoms and Atomic Ions), Moscow: Energoatomizdat, 1986, 2nd ed.

    Google Scholar 

  79. El’yashevich, M.A., Atomnaya i molekulyarnaya spektroskopiya (Atomic and Molecular Spectroscopy), Moscow: Fizmatlit, 1962.

    Google Scholar 

  80. Herzberg, G., Molecular Spectra and Molecular Structure, Volume I: Spectra of Diatomic Molecules, New York: Prentice Hall, 1939.

    Google Scholar 

  81. Huber, K.-P. and Herzberg, G., Molecular Spectra and Molecular Structure, Volume IV: Constants of Diatomic Molecules. Part 1: Molecules of Ag 2-MoO, New York: Van Nostrand, 1979.

    Google Scholar 

  82. Huber, K.-P. and Herzberg, G., Molecular Spectra and Molecular Structure, Volume IV: Constants of Diatomic Molecules. Part 2: Molecules of N 2-ZrO, New York: Van Nostrand, 1979.

    Google Scholar 

  83. Fantz, U. and Wünderlich, D., Franck-Condon Factors, Transition Probabilities, and Radiative Lifetimes for Hydrogen Molecules and Their Isotopomeres, IAEA INDC(NDS) 457 report, 2004 (http://www-amdis.iaea.org).

  84. Janev, R.K., Reiter, D., and Samm, U., Collisional Processes in a Low-Temperature Hydrogen Plasma, in Entsiklopediya nizkotemperaturnoi plazmy: Seriya B (Spravochnye prilozheniya, bazy i banki dannykh). Tom V-1: Diagnostika nizkotemperaturnoi plazmy. Chast’ II (Encyclopedia of Low-Temperature Plasma: Series B (Reference Appendices, Databases, and Data Banks). Volume V-1: Diagnostics of Low-Temperature Plasma. Part II), Kolesnikov, V.N., Ed., Moscow: Yanus-K, 2007, p. 110.

    Google Scholar 

  85. Janev, R.K., Atomic and Plasma-Wall Interaction Issues in Divertor Plasma Modeling, At. Plasma-Mater. Interact. Data Fusion, 2001, vol. 9, p. 1.

    Google Scholar 

  86. Capitelli, M., Celiberto, R., De Pascale, O., Doimede, P., Esposito, F., Gorse, C., Laricchita, A., Longo, S., and Pagano, D., Elementary Processes, Transport, and Kinetics of Molecular Plasmas, At. Plasma-Mater. Interact. Data Fusion, 2008, vol. 14, p. 44.

    Google Scholar 

  87. Atomic and Molecular Processes in Fusion Edge Plasmas, Janev, R.K., Ed., New York: Plenum, 1995.

    Google Scholar 

  88. Mitchner, M. and Kruger, Ch., Partially Ionized Gases, New York: Wiley, 1973.

    Google Scholar 

  89. Hasted, J.B., Physics of Atomic Collisions, Washington: Butterworths, 1964.

    Google Scholar 

  90. Golden, D.E., Lane, N.F., Temkin, A., and Gerjuoy, E., Low-Energy Electron-Molecule Scattering Experiments and the Theory of Rotational Excitation, Rev. Mod. Phys., 1971, vol. 43, p. 642.

    Article  ADS  Google Scholar 

  91. Sobel’man, I.I., Vainshtein, A.A., and Yukov, E.A., Secheniya vozbuzhdeniya atomov i ionov elektronami (Electron-Excitation Cross Sections of Atoms and Ions), Moscow: Nauka, 1973.

    Google Scholar 

  92. Vainshtein, L.A. and Shevel’ko, V.P., Struktura i kharakteristiki ionov v goryachei plazme (Structure and Characteristics of Ions in the Hot Plasma), Moscow: Nauka, 1986.

    Google Scholar 

  93. Drukarev, G.F., Stolknoveniya elektronov s atomami i molekulami, Moscow: Nauka, 1978. Translated under the title Collisions of Electrons with Atoms and Molecules, New York: Kluwer, 1987.

    Google Scholar 

  94. Egorov, V.S., Tolmachev, Yu.A., and Klyucharev, A.N., Spravochnik konstant elementarnykh protsessov s uchastiem atomov, ionov, elektronov, fotonov (A Reference Book of Constants for Elementary Processes with the Participation of Atoms, Ions, Electrons, and Photons), Zhiglinskii, A.G., Ed., St. Petersburg: St. Petersburg State University, 1994.

    Google Scholar 

  95. Atomic and Molecular Processes, Bates, D.R., Ed., New York: Academic, 1962.

    Google Scholar 

  96. Smirnov, B.M., Atomnye stolknoveniya i elementarnye protsessy v plazme (Atom Collisions and Elementary Processes in Plasmas), Moscow: Atomizdat, 1968.

    Google Scholar 

  97. Mott, N.F. and Massey, H.S.W., The Theory of Atomic Collisions, Oxford: Clarendon, 1965.

    Google Scholar 

  98. King, G.C., Trajmar, S., and McConkey, J.W., Electron Impact on Atomic Hydrogen—Recent Results and New Directions, J. Phys. B: At., Mol. Opt. Phys., 1989, vol. 23, no. 5, p. 229.

    Google Scholar 

  99. Atomno-molekulyarnye protsessy: v zadachakh s resheniyami. Uchebnoe rukovodstvo (Atomic-Molecular Processes in Problems with Solutions: An Educational Manual), Nikitin, E.E. and Smirnov, B.M., Eds., Moscow: Nauka, 1988.

    Google Scholar 

  100. Eletskii, A.V., Palkina, L.A., and Smirnov, B.M., Yavleniya perenosa v slaboionizovannoi plazme (Transport Phenomena in Weakly Ionized Plasma), Moscow: Atomizdat, 1975.

    Google Scholar 

  101. Brode, R.B., The Quantitative Study of the Collisions of Electrons with Atoms, Rev. Mod. Phys., 1933, vol. 5, p. 257.

    Article  ADS  Google Scholar 

  102. Trajmar, S., Register, D.F., and Chutjan, A., Electron Scattering by Molecules: II. Experimental Methods and Data, Phys. Rep., 1983, vol. 97, no. 5, p. 221.

    Article  ADS  Google Scholar 

  103. Huxley, L. and Crompton, R., The Diffusion and Drift of Electrons in Gases, New York: Wiley, 1974.

    Google Scholar 

  104. Engelghardt, A.G., Phelps, A.V., and Risk, S.G., Determination of Momentum Transfer and Inelastic Collision Cross Sections for Electrons in Nitrogen Using Transport Coefficients, Phys. Rev. A, 1964, vol. 135, p. 1566.

    Article  ADS  Google Scholar 

  105. Morgan, W.L., Test of a Numerical Optimization Algorithm for Obtaining Cross Sections for Multiple Collision Processes from Electron Swarm Data, J. Phys. D: Appl. Phys, 1993, vol. 26, p. 209.

    Article  ADS  Google Scholar 

  106. Ohmori, Y., Shimozuma, M., and Tagashira, H., Boltzmann Equation Analysis of Electron Swarm Behavior in Nitrogen, J. Phys. D: Appl. Phys, 1988, vol. 21, p. 724.

    Article  ADS  Google Scholar 

  107. Pitchford, L.C., ONeil, S.V., and Rumble, J.R., Jr., Extended Boltzmann Analysis of Electron Swarm Experiments, Phys. Rev. A: At., Mol., Opt. Phys., 1981, vol. 23, p. 294.

    ADS  Google Scholar 

  108. Engelhardt, A.G. and Phelps, A.V., Elastic and Inelastic Collision Cross Sections in Hydrogen and Deuterium from Transport Coefficients, Phys. Rev., 1963, vol. 131, p. 2115.

    Article  ADS  Google Scholar 

  109. Frost, L.S. and Phelps, A.V., Rotational Excitation and Momentum Transfer Cross Sections for Electrons in H2 and N2 from Transport Coefficients, Phys. Rev., 1962, vol. 127, p. 1621.

    Article  ADS  Google Scholar 

  110. Dutton, J.A., Survey of Electron Swarm Data, J. Phys. Chem. Ref. Data, 1975, vol. 4, no. 3, p. 578.

    Article  ADS  Google Scholar 

  111. Pack, J.L. and Phelps, A.V., Drift Velocities of Slow Electrons in Helium, Neon, Argon, Hydrogen, and Nitrogen, Phys. Rev., 1961, vol. 121, p. 798.

    Article  ADS  Google Scholar 

  112. Lowke, J.J., The Drift Velocity of Electrons in Hydrogen and Nitrogen, Austr. J. Phys., 1963, vol. 16, p. 115.

    ADS  Google Scholar 

  113. Robertson, A.G., Electron Drift Velocities in Normal and Para Hydrogen and Deuterium, Austr. J. Phys., 1971, vol. 24, p. 445.

    ADS  Google Scholar 

  114. Blevin, H.A. and Hasan, M.Z., The Measurement of Electron Drift Velocities, Aust. J. Phys., 1967, vol. 20, p. 735.

    ADS  Google Scholar 

  115. Frommhold, L., Eine Untersuchung der Elektronen komponente von Elektronelawinen im Homogenen Feld II, Z. Phys., 1960, vol. 160, p. 554.

    Article  ADS  Google Scholar 

  116. Rose, D.J., Townsend Ionization Coefficient for Hydrogen and Deuterium, Phys. Rev., 1956, vol. 104, no. 2, p. 273.

    Article  ADS  Google Scholar 

  117. De Bitetto, D.J. and Fisher, L.H., Townsend Ionization Coefficient and Uniform Field Breakdown in Hydrogen and Nitrogen at High Pressures, Phys. Rev., 1956, vol. 104, no. 5, p. 1213.

    Article  ADS  Google Scholar 

  118. Hopwood, W., Peacock, N.J., and Wilkes, A., A Study of Ionization Coefficients and Electrical Breakdown in Hydrogen, Proc. R. Soc. London, Ser. A, 1956, vol. 235, p. 334.

    Article  ADS  Google Scholar 

  119. Barna, S.F., Jr., Edelson, D., and McAfee, K.B., Jr., First Townsend Ionization Coefficients in Hydrogen and Deuterium, J. Appl. Phys., 1964, vol. 35, p. 2781.

    Article  ADS  Google Scholar 

  120. Chanin, L.M. and Rork, G.D., Measurements of the First Townsend Ionization Coefficient in Neon and Hydrogen, Phys. Rev., 1963, vol. 132, no. 6, p. 2547.

    Article  ADS  Google Scholar 

  121. Crompton, R.W., Dutton, J., and Haydon, S.C., Precision Measurements of Ionization Coefficients in Uniform Static Fields, Proc. Phys. Soc., London, Sect. B, 1956, vol. 69, p. 2.

    Article  ADS  Google Scholar 

  122. Eifionydd, J. and Llewellyn, J., The Experimental Determination of the Primary Ionization Coefficients at Low Gas Pressures, Proc. Phys. Soc., 1958, vol. 72, p. 363.

    Article  Google Scholar 

  123. Haydon, S.C. and Robertson, A.G., Pre-Breakdown Ionization in Hydrogen at Low Pressures, Proc. Phys. Soc., 1961, vol. 78, p. 92.

    Article  ADS  Google Scholar 

  124. Blevin, H.A., Haydon, S.C., and Somerville, J.M., Effect of Gaseous Impurities on the First Townsend Coefficient in Hydrogen, Nature (London), 1957, vol. 179, p. 38.

    Article  ADS  Google Scholar 

  125. Bradbury, N.E. and Nielsen, R.A., Absolute Values of the Electron Mobility in Hydrogen, Phys. Rev., 1936, vol. 49, p. 389.

    Article  ADS  Google Scholar 

  126. Prasad, A.N. and Smeaton, G.P., Drift Velocities of Electrons in Nitrogen and Hydrogen, Br. J. Appl. Phys., 1967, vol. 18, p. 371.

    Article  ADS  Google Scholar 

  127. Jager, G. and Otto, W., Driftgeschwindigkeiten von Jonen und Elektronen in Argon und Wasserstoff, Z. Phys., 1962, vol. 169, p. 517.

    Article  ADS  Google Scholar 

  128. Schlumbohm, H., Messung der Driftgeschwindigkeiten von Elektronen und Positiven Ionen in Gasen, Z. Phys., 1965, vol. 182, p. 317.

    Article  ADS  Google Scholar 

  129. Crompton, R.W., Elford, M.T., and McIntosh, A.I., Electron Transport Coefficients in Hydrogen and Deuterium, Aust. J. Phys., 1968, vol. 21, p. 43.

    ADS  Google Scholar 

  130. Cochran, L.W. and Forester, D.W., Diffusion of Slow Electrons in Gases, Phys. Rev., 1962, vol. 126, p. 1785.

    Article  ADS  Google Scholar 

  131. Townsend, J.S. and Bailey, V.A., The Motion of Electrons in Gases, Philos. Mag., Ser. 6, 1921, vol. 42, p. 873.

    Article  Google Scholar 

  132. Wagner, E.B., Davis, F.J., and Hurst, G.S., Time-of-Flight Investigation of Electron Transport in Some Atomic and Molecular Gases, J. Chem. Phys., 1967, vol. 47, p. 3138.

    Article  ADS  Google Scholar 

  133. Lawson, P.A. and Lucas, J., Electron Diffusion in Hydrogen at High Electric Fields and Low Gas Pressures: II, Br. J. Appl. Phys., 1965, vol. 16, p. 1813.

    Article  ADS  Google Scholar 

  134. Naidu, M.S. and Prasad, A.N., The Ratio of Diffusion Coefficient to Mobility for Electrons in Nitrogen and Hydrogen, Br. J. Appl. Phys., 1968, vol. 1, p. 763.

    ADS  Google Scholar 

  135. Schlumbohm, H., Stossionistierungskoeffizient α, Mittlere Elektronenergien und die Beweglichkeit von Elektronen in Gasen, Z. Phys., 1965, vol. 18, p. 492.

    ADS  Google Scholar 

  136. Breare, J.M. and Von Engel, A., Locating Electron Swarms in Hydrogen by Far Ultra-Violet Signals, Proc. R. Soc. London, Ser. A, 1964, vol. 28, p. 390.

    ADS  Google Scholar 

  137. Virr, L.E., Lucas, J., and Kontoleon, N., The Measurement of the Ratio of Diffusion Coefficient to Mobility for Electrons at Low, J. Phys. D: Appl. Phys., 1972, vol. 5, p. 542.

    Article  ADS  Google Scholar 

  138. Warren, R.W. and Parker, J.H., Ratio of Diffusion Coefficient to Mobility for Electrons in He, Ar, N2, H2, D2, CO, and CO2 at Low Temperatures and Low E/p, Phys. Rev., 1962, vol. 128, p. 2661.

    Article  ADS  Google Scholar 

  139. Crompton, R.W. and Sutton, D.J., Experimental Investigation of the Diffusion of Slow Electrons in Nitrogen and Hydrogen, Proc. R. Soc. London, Ser. A, 1952, vol. 215, p. 467.

    Article  ADS  Google Scholar 

  140. Kieffer, L.J. and National Standard Reference Data System—National Bureau of Standards (Corporate Author), A Compilation of Electron Collision Cross Section Data for Modeling Gas Discharge Lasers, Boulder: University of Colorado, 1973.

    Google Scholar 

  141. Itikawa, Y., Momentum Transfer Cross Sections for Electron Collisions with Atoms and Molecules, At. Data Nucl. Data Tables, 1974, vol. 14, no. 1, p. 1.

    Article  ADS  Google Scholar 

  142. Itikawa, Y., Momentum-Transfer Cross Sections for Electron Collisions with Atoms and Molecules: Revision and Supplement, 1977, At. Data Nucl. Data Tables, 1978, vol. 21, no. 1, p. 69.

    Article  ADS  Google Scholar 

  143. Tawara, H., Itikawa, Y., Nishimura, H., and Yoshino, M., Cross Sections and Related Data for Electron Collisions with Hydrogen Molecules and Molecular Ions, J. Phys. Chem. Ref. Data, 1990, vol. 19, no. 3, p. 618.

    Article  ADS  Google Scholar 

  144. Protasov, Yu.S. and Chuvashev, S.N., On the Elementary Processes in a Plasma, in Entsiklopediya nizkotemperaturnoi plazmy. Vvodnyi tom 1 (Encyclopedia of Low-Temperature Plasma: Introductory Volume 1), Fortov, V.E., Ed., Moscow: Nauka/Interperiodika, 2000, p. 29.

    Google Scholar 

  145. Jung-Sik Yoon, Mi-Young Song, Jeong-Min Han, Sung Ha Hwang, Won-Seok Chang, Bong Ju Lee, and Yukikazu Itikawa, Cross Sections for Electron Collisions with Hydrogen Molecules, J. Phys. Chem. Ref. Data, 2008, vol. 37, no. 2, p. 913.

    Article  ADS  Google Scholar 

  146. Crompton, R.W., Gibson, D.K., and McInosh, A.I., The Cross Section for the J = 0−2 Rotational Excitation of Hydrogen by Slow Electrons, Aust. J. Phys., 1969, vol. 22, p. 715.

    ADS  Google Scholar 

  147. Gibson, D.K., The Cross Sections for Rotational Excitation of H2 and D2 by Low-Energy Electrons, Aust. J. Phys., 1970, vol. 23, p. 683.

    ADS  Google Scholar 

  148. Srivastava, S.K., Chutjian, A., and Trajmar, S., Absolute Elastic Differential Electron Cross Sections in the Intermediate Energy Region: I. H2, J. Chem. Phys., 1975, vol. 63, p. 2659.

    Article  ADS  Google Scholar 

  149. Gorse, C. and Capitelli, M., Collision Integrals of High Temperature Species, At. Plasma-Mater. Interact. Data Fusion, 2001, vol. 9, p. 75.

    Google Scholar 

  150. Schwartz, C., Electron Scattering from Hydrogen, Phys. Rev., 1961, vol. 124, p. 1468.

    Article  ADS  Google Scholar 

  151. Armstead, R.L., Electron-Hydrogen Scattering Calculation, Phys. Rev., 1968, vol. 171, p. 91.

    Article  ADS  Google Scholar 

  152. Galitis, M., in Atomnye stolknoveniya, Veldre, V.Ya., Ed., Riga: Academy of Sciences Latvian SSR, 1965, vol. 3. Translated under the title Atomic Collisions: The Theory of Electron-Atom Collision, Cambridge: Massachusetts Institute of Technology, 1966.

    Google Scholar 

  153. Burke, P.G., Gallaher, D.F., and Geltman, S., Electron Scattering by Atomic Hydrogen Using a Pseudo-State Expansion: I. Elastic Scattering, J. Phys. B: At. Mol. Phys., 1969, vol. 2, p. 1142.

    Article  ADS  Google Scholar 

  154. Shyn, T.W. and Sharp, W.E., Angular Distributions of Electrons Elastically Scattered From, Phys. Rev. A: At., Mol., Opt. Phys., 1981, vol. 24, p. 1734.

    ADS  Google Scholar 

  155. Itikawa, Y. and Mason, N., Rotational Excitation of Molecules by Electron Collisions, Phys. Rep., 2005, vol. 414, p. 1.

    Article  ADS  Google Scholar 

  156. Chang, E.S. and Temkin, A., Rotational Excitation of Diatomic Molecules by Electron Impact, Phys. Rev. Lett., 1969, vol. 23, p. 399.

    Article  ADS  Google Scholar 

  157. Gerjuoy, E. and Stein, S., Rotational Excitation by Slow Electrons, Phys. Rev., 1955, vol. 97 P, p. 1671.

    Article  ADS  Google Scholar 

  158. Gerjuoy, E. and Stein, S., Rotational Excitation by Slow Electrons: II, Phys. Rev., 1955, vol. 98, p. 1848.

    Article  ADS  Google Scholar 

  159. Henry, R.J.W. and Lane, N.F., Polarization and Exchange Effects in Low-Energy Electron-H2 Scattering, Phys. Rev., 1969, vol. 183, p. 221.

    Article  ADS  Google Scholar 

  160. Hara, S., Rotational Excitation of H2 by Slow Electrons, J. Phys. Soc. Jpn., 1969, vol. 27, p. 1592.

    Article  ADS  Google Scholar 

  161. Lane, N.F. and Geltman, S., Rotational Excitation of Diatomic Molecules by Slow Electrons: Application to H2, Phys. Rev., 1967, vol. 160, p. 53.

    Article  ADS  Google Scholar 

  162. Sampson, D.H. and Mjolsness, R.C., Theory of Rotational Excitation of Homonuclear Diatomic Molecules by Slow Electrons: Application to N2 and H2, Phys. Rev. A, 1965, vol. 140, p. 1466.

    Article  ADS  Google Scholar 

  163. Takayanagi, K. and Geltman, S., Excitation of Molecular Rotation by Slow Electrons, Phys. Rev. A, 1965, vol. 138, p. 1003.

    ADS  Google Scholar 

  164. Geltman, S. and Takayanagi, K., Excitation of Molecular Rotation by Slow Electrons: II, Phys. Rev. A, 1966, vol. 143, p. 25.

    Article  ADS  Google Scholar 

  165. Oksyuk, Yu.D., Excitation of the Rotational Levels of Diatomic Molecules by Electron Impact in the Adiabatic Approximation, Zh. Eksp. Teor. Fiz., 1966, vol. 49, p. 1261 [Sov. Phys. JETP (Engl. Transl.), 1966, vol. 22, p. 873].

    Google Scholar 

  166. Wong, S.F. and Schulz, G.J., Rotational and Vibrational Excitation of H2 by Electron Impact at 4.5 eV: Angular Distributions, Phys. Rev. Lett., 1974, vol. 32, p. 1089.

    Article  ADS  Google Scholar 

  167. Srivastava, S.K., Hall, R.I., Trajmar, S., and Chutjian, A., Pure Rotational Excitation of H2 at Electron Impact Energies of 3 to 100 eV, Phys. Rev. A: At., Mol., Opt. Phys., 1975, vol. 12, p. 1399.

    ADS  Google Scholar 

  168. Linder, F. and Schmidt, H., Rotational and Vibrational Excitation of H2 by Slow Electron Impact, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem., 1971, vol. 26A, p. 1603.

    Google Scholar 

  169. Ehrhardt, H. and Linder, F., Rotational Excitation of H2 by Slow Electrons in a Beam Experiment, Phys. Rev. Lett., 1968, vol. 21, p. 419.

    Article  ADS  Google Scholar 

  170. Schmidt, B., Berkhan, K., Gotz, B., and Muller, M., New Experimental Techniques in the Study of Electron Swarms in Gases and Their Impact on the Determination of Low-Energy Electron Scattering Cross Sections, Phys. Scr., 1994, vol. 53, p. 30.

    Article  Google Scholar 

  171. Schultz, G.J., Vibrational Excitation of N2, CO, and H2 by Electron Impact, Phys. Rev. A, 1964, vol. 135, p. 988.

    Article  ADS  Google Scholar 

  172. Mjolsness, R.C. and Sampson, D.H., Distorted-Wave Calculation of Rotational Excitation of N2 by Slow Electrons, Phys. Rev. Lett., 1964, vol. 13, p. 812.

    Article  ADS  Google Scholar 

  173. Fisk, J.B., Theory of the Scattering of Slow Electrons by Diatomic Molecules, Phys. Rev., 1936, vol. 49, p. 167.

    Article  ADS  MATH  Google Scholar 

  174. Nibler, J.W., McDonald, J.R., and Harvey, A.B., Cars Measurement of Vibrational Temperatures in Electric Discharges, Opt. Commun., 1976, vol. 18, no. 3, p. 371.

    Article  ADS  Google Scholar 

  175. Hay, S.O., Roman, W.C., and Colket, M.B. III, CVD Diamond Deposition Processes Investigation: CARS Diagnostics/Modelling, J. Mater. Res., 1990, vol. 5, no. 11, p. 2387.

    Article  ADS  Google Scholar 

  176. Shakhatov, V.A., De Pascale, O., and Capitelli, M., Theoretical and Experimental CARS Rotational Distributions of H2(X 1Σ +g ) in the Radio-Frequency Capacitive Discharge Plasma, Eur. Phys. J. D, 2004, vol. 29, no. 20, p. 230.

    ADS  Google Scholar 

  177. Gans, T., Schulz-von der Gathen, V., and Dobele, H.F., Time Dependence of Rotational State Populations of Excited Hydrogen Molecules in an RF Excited Plasma Reactor, Plasma Sources Sci. Technol., 2001, vol. 10, p. 17.

    Article  ADS  Google Scholar 

  178. Astashkevich, S.A., Kalachev, M.V., Lavrov, B.P., and Ovchinnikov, V.L., Determination of Gas Temperature of a Nonequilibrium Plasma from the Intensity Distribution in the Rotational Structure of the GK 1Σ +g B 1Σ +u Bands of H2, Opt. Spektrosk., 1999, vol. 87, no. 2, p. 229 [Opt. Spectrosc. (Engl. Transl.), 1999, vol. 87, no. 2, p. 212].

    Google Scholar 

  179. Pealat, M., Taran, J.-P., Bacal, M., and Hilion, F., Rovibrational Molecular Populations, Atoms, and Negative Ions in H2 and D2 Magnetic Multicusp Discharges, J. Chem. Phys., 1985, vol. 82, no. 11, p. 4943.

    Article  ADS  Google Scholar 

  180. Asanov, B.U., Ochkin, V.N., Savinov, S.Yu., Sobolev, N.N., and Tskhai, S.N., Distribution of H2(X 1Σ +g ) Molecules over the Rotational States in a Gas-Discharge Plasma, Kratk. Soobshch. Fiz., 1986, no. 9, p. 26.

  181. Ochkin, V.N., Savinov, S.Yu., Sobolev, N.N., and Tskhai, S.N., Local Rotational Distributions of H2(X 1Σ +g ) Molecules in Glow Discharges, Zh. Tekh. Fiz., 1988, vol. 58, no. 7, p. 1283 [Sov. Phys. Tech. Phys. (Engl. Transl.), 1988, vol. 33, no. 7, p. 763].

    Google Scholar 

  182. Lefebvre, M., Pealat, M., and Taran, J.P., Diagnostics of Plasmas by CARS (Coherent Anti-Stokes Raman Scattering), Pure Appl. Chem., 1992, vol. 64, no. 5, p. 685.

    Article  Google Scholar 

  183. Rusanov, V.D. and Fridman, A.A., Fizika khimicheski aktivnoi plazmy, Moscow: Nauka, 1982. Translation under the title Physics of Chemically Active Plasma, Boca Raton: CRC Press, 2007.

    Google Scholar 

  184. Lane, N.F., The Theory of Electron-Molecule Collisions, Rev. Mod. Phys., 1980, vol. 52, p. 29.

    Article  ADS  Google Scholar 

  185. Morgan, W.L., Electron Collision Data for Plasma Chemistry Modeling, Adv. At., Mol., Opt. Phys., 2000, vol. 43, p. 79.

    Google Scholar 

  186. Nishimura, H., Danjo, A., and Sugahara, H., Differential Cross Sections of Electron Scattering from Molecular Hydrogen: I. Elastic Scattering and Vibrational Excitation (X 1Σ +g , V = 0 → 1), V = 0−14), J. Phys. Soc. Jpn., 1985, vol. 54, p. 1757.

    Article  ADS  Google Scholar 

  187. Crompton, R.W., Gibson, D.K., and Robertson, A.G., Vibrational Excitation of H2 by Low-Energy Electrons, Phys. Rev. A: At., Mol., Opt. Phys., 1970, vol. 2, p. 1386.

    ADS  Google Scholar 

  188. Brunger, M.J., Buckmann, S.J., Newman, D.S., and Alle, D.T., Elastic Scattering and Rovibrational Excitation of H2 by Low-Energy Electron, J. Phys. B: At., Mol. Opt. Phys., 1991, vol. 24, p. 1435.

    Article  ADS  Google Scholar 

  189. Ehrhadt, H., Langhans, L., Linder, F., and Taylor, H.S., Resonance Scattering of Slow Electrons from H2 and CO Angular Distributions, Phys. Rev., 1968, vol. 173, p. 222.

    Article  ADS  Google Scholar 

  190. Allan, M., Experimental Observation of Structures in the Energy Dependence of Vibrational Excitation in H2 by Electron Impact in the 2Σ +u Resonance Region, J. Phys. B: At. Mol. Phys., 1985, vol. 18, p. L451.

    Article  ADS  Google Scholar 

  191. Truhlar, D.G., Electron Scattering with and without Vibrational Excitation: VIII. Comment on a Theory of Small-Energy-Transfer Collisions Dominated by Long-Range Forces, Phys. Rev. A: At., Mol., Opt. Phys., 1973, vol. 7, p. 2217.

    ADS  Google Scholar 

  192. Atems, D.E. and Wadehra, J.M., Nonlocal Effects in Dissociative Electron Attachment to H2, Phys. Rev. A: At., Mol., Opt. Phys., 1990, vol. 42, p. 5201.

    ADS  Google Scholar 

  193. Capitelli, M., Celliberto, R., Esposito, F., Laricchiuta, A., Hassouni, K., and Longo, S., Elementary Processes and Kinetics of H2 Plasmas for Different Technological Applications, Plasma Sources Sci. Technol., 2002, vol. 11, p. A7.

    Article  ADS  Google Scholar 

  194. Celliberto, R., Capitelli, M., and Laricchiuta, A., Towards a Cross Section Database of Excited Atomic and Molecular Hydrogen, Phys. Scr., 2002, vol. T96, p. 32.

    Article  ADS  Google Scholar 

  195. Rusanov, V.D., Fridman, A.A., and Sholin, G.V., The Physics of a Chemically Active Plasma with Nonequilibrium Vibrational Excitation of Molecules, Usp. Fiz. Nauk, 1981, vol. 134, no. 6, p. 185 [Sov. Phys.—Usp. (Engl. Transl.), 1981, vol. 24, no. 6, p. 447].

    Article  Google Scholar 

  196. Polak, L.S., Sergeev, P.A., and Slovetskii, D.I., Calculation of the Steady-State Distribution of the Population of the State of the X 1Σ +g State of the N2 Molecule over the Vibrational Levels in a Glow Discharge, Khim. Vys. Energ., 1973, vol. 7, no. 3, p. 387.

    Google Scholar 

  197. Capitelli, M., Dilonardo, M., and Molinari, E., A Theoretical Calculation of Dissociation Rates of Molecular Hydrogen in Electrical Discharges, Chem. Phys., 1977, vol. 20, p. 417.

    Article  Google Scholar 

  198. Hiskes, J.R., Cross Sections for the Vibrational Excitation of the H2(X 1Σ +g , V) State via Electron Collisional Excitation of the Higher Singlet States, J. Appl. Phys., 1980, vol. 51, p. 4592.

    Article  ADS  Google Scholar 

  199. Celiberto, R., Capitelli, M., and Lamanna, U.T., Vibrational Excitation of through Excitation of H2(X 1Σ +g , V)/D2(X 1Σ +g , V) Electronically Excited Singlet States and Radiative Cascade, Chem. Phys., 1994, vol. 183, p. 101.

    Article  ADS  Google Scholar 

  200. Celiberto, R., Janev, R.K., Laricchiuta, A., Capitelli, M., Wadehra, J.M., and Atems, D.E., Cross Section Data for Electron-Impact Inelastic Processes of Vibrational Excited Molecules of Hydrogen and Its Isotopes, At. Data Nucl. Data Tables, 2001, vol. 77, p. 161.

    Article  ADS  Google Scholar 

  201. Drawin, H.W. and Emard, F., Instantaneous Population Densities of the Excited Levels of Hydrogen Atoms and Hydrogen-Like Ions in Plasmas, Physica A (Amsterdam), 1977, vol. 85, no. 2, p. 333.

    Article  Google Scholar 

  202. Khakoo, M.A. and Trajmar, S., Electron Impact Excitation of the a 3Σ +g , B 1Σ +u , c 3Πu, and C 1Πu States of H2, Phys. Rev. A: At., Mol., Opt. Phys., 1986, vol. 34, p. 146.

    ADS  Google Scholar 

  203. Srivastava, S.K. and Jensen, S., Experimental Differential and Integral Electron Impact Cross Sections for the B 1Σ +u State of H2 in the Intermediate-Energy Region, J. Phys. B: At. Mol. Phys., 1977, vol. 10, p. 3341.

    Article  ADS  Google Scholar 

  204. Ajello, J.M., Shemanskiy, D.E., Kwok, T.L., and Yung, Y.L., Studies of Extreme-Ultraviolet Emission from Rydberg Series of H2 by Electron Impact, Phys. Rev. A: At., Mol., Opt. Phys., 1984, vol. 29, p. 636.

    ADS  Google Scholar 

  205. Shemansky, D.E., Ajello, J.M., and Hall, D.T., Cross Section Excitation of Rydberg Series of H2 by Electron Impact, Astrophys. J., 1985, vol. 296, p. 765.

    Article  ADS  Google Scholar 

  206. Arringhini, G.P., Biondi, F., and Guidotti, C., A Study of the Inelastic Scattering of Fast Electrons from Molecular Hydrogen, Mol. Phys., 1980, vol. 41, p. 1501.

    Article  ADS  Google Scholar 

  207. Arringhini, G.P., Biondi, F., Guidotti, C., Biagi, A., and Marinelli, F., Inelastic Scattering of Fast Electrons from Molecular Systems: I. Hydrogen Molecule, Chem. Phys., 1980, vol. 52, p. 133.

    Article  Google Scholar 

  208. Chung, S. and Lin, C.C., Application of the Close-Coupling Method to Excitation of Electronic States and Dissociation of H2 by Electron Impact, Phys. Rev. A: At., Mol., Opt. Phys., 1978, vol. 17, p. 1874.

    ADS  Google Scholar 

  209. Arne, W., Fliflet, A.W., and Mckoy, V., Distorted-Wave-Approximation Cross Sections for Excitation of the b 3Σ +u and B 1Σ +u States of H2 by Low-Energy-Electron Impact, Phys. Rev. A: At., Mol., Opt. Phys., 1980, vol. 21, p. 1863.

    ADS  Google Scholar 

  210. Hazi, A.U., Impact-Parameter Method for Electronic Excitation of Molecules by Electron Impact, Phys. Rev. A: At., Mol., Opt. Phys., 1981, vol. 23, p. 2232.

    ADS  Google Scholar 

  211. Redmon, M.J., Garret, B.C., Redmon, L.T., and McCurdy, C.W., Improved Impact-Parameter Method for Electronic Excitation and Dissociation Molecules by Electron Impact, Phys. Rev. A: At., Mol., Opt. Phys., 1985, vol. 32, p. 3354.

    ADS  Google Scholar 

  212. Marx, J., Lebehot, A., and Camparque, R., Cross Sections for Vibrational Excitation of H2(X 1Σ +g , V″ = 0) via Electronically Excited Singlet States Populated by Low Energy Electron Impact, J. Phys. (Paris), 1985, vol. 46, p. 1667.

    Google Scholar 

  213. Celiberto, R. and Resciongo, T., Dependence of Electron-Impact Excitation Cross Sections on the Initial Vibrational Quantum Number in H2 and D2 Molecules: X 1Σ +g B 1Σ +u and X 1Σ +g C 1Πu Transitions, Phys. Rev. A: At., Mol., Opt. Phys., 1993, vol. 47, p. 1939.

    ADS  Google Scholar 

  214. Gerhart, D.E., Comprehensive Optical and Collision Data for Radiation Action: I. H2, J. Chem. Phys., 1975, vol. 62, p. 821.

    Article  ADS  Google Scholar 

  215. Khare, S.P., Excitation of Hydrogen Molecules by Electron Impact, Phys. Rev., 1966, vol. 149, p. 33.

    Article  ADS  Google Scholar 

  216. Miller, K.J. and Krauss, M., Born Inelastic Differential Cross Sections in H2, J. Chem. Phys., 1969, vol. 47, p. 3754.

    Article  ADS  Google Scholar 

  217. Miles, W.T., Thompson, R., and Green, A.E.S., Electron-Impact Cross Sections and Energy Deposition in Molecular Hydrogen, J. Appl. Phys., 1972, vol. 43, p. 678.

    Article  ADS  Google Scholar 

  218. Celiberto, R., Capitelli, M., Durante, N., and Lamanna, U.T., Electron-Impact Cross Sections Involving Electronically Excited States in H2 Molecules: B 1Σ +u I 1Πg Transition, Phys. Rev. A: At., Mol., Opt. Phys., 1996, vol. 54, p. 432.

    ADS  Google Scholar 

  219. De Heer, F.J. and Carriere, J.D., Emissions of the Werner Band System and Lyman-α Radiation for 0.05–6 keV Electrons in H2, J. Chem. Phys., 1971, vol. 55, p. 3829.

    Article  ADS  Google Scholar 

  220. Mu-Tao, Lee., Lucchese, R.R., and McKoy, V., Electron-Impact Excitation and Dissociation Processes in H2, Phys. Rev. A: At., Mol., Opt. Phys., 1982, vol. 26, p. 3240.

    ADS  Google Scholar 

  221. Celiberto, R., Laricchiuta, U.T., Janev, R.K., Lammana, U.T., and Capitelli, M., Electro-Impact Cross Sections of Vibrationally Excited X 1Σ +g H2 and D2 Molecules to Rydberg States, Phys. Rev. A: At., Mol., Opt. Phys., 1999, vol. 60, p. 2091.

    ADS  Google Scholar 

  222. Hazi, A.U., Rescigno, T.N., and Orel, A.E., Theoretical Study of the Deexcitation of KrF and XeF Excimers by Low-Energy Electrons, Appl. Phys. Lett., 1979, vol. 35, p. 477.

    Article  ADS  Google Scholar 

  223. Liu, X., Shemansky, D.E., Abgrall, H., Roueff, E., Ahmed, S.M., and Ajello, J.M., Electron Impact Excitation of H2: Resonance Excitation of B 1Σ +u (J i = 2, V i = 0) and Effective Excitation Function of EF 1Σ +g , J. Phys. B: At., Mol. Opt. Phys., 2003, vol. 36, p. 173.

    Article  ADS  Google Scholar 

  224. Wrkich, D., Mathews, I., Kanik, S., Trajmar, S., and Khakoo, M.A., Differential Cross-Sections for the Electron Impact Excitation of the B 1Σ +u , c 3Πu, a 3Σ +g , C 1Πu, EF 1Σ +g , and e 3Σ +u States of Molecular Hydrogen, J. Phys. B: At., Mol. Opt. Phys., 2002, vol. 35, p. 4695.

    Article  ADS  Google Scholar 

  225. Weingartshofer, A., Ehrhardt, H., Hermann, V., and Linder, F., Measurements of Absolute Cross Sections for (e, H2) Collision Processes: Formation and Decay of H 2 Resonances, Phys. Rev. A: At., Mol., Opt. Phys., 1970, vol. 2, p. 294.

    ADS  Google Scholar 

  226. Corrigan, S.J.B., Dissociation of Molecular Hydrogen by Electron Impact, J. Chem. Phys., 1965, vol. 43, p. 4381.

    Article  ADS  Google Scholar 

  227. Khakoo, M.A., Trajmar, S., McAdams, R., and Shyn, T.W., Electron-Impact Excitation Cross Sections for the b 3Σ +u State of H2, Phys. Rev. A: At., Mol., Opt. Phys., 1987, vol. 35, p. 2832.

    ADS  Google Scholar 

  228. Hall, R.J. and Andric, L., Electron Impact Excitation of H2 (D2): Resonance Phenomena Associated with the X 2Σ +u and B 2Σ +g States of H2 in the 10 eV Region, J. Phys. B: At. Mol. Phys., 1984, vol. 17, p. 3815.

    Article  ADS  Google Scholar 

  229. Nishimura, H. and Danjo, A., Differential Cross Sections of Electron Scattering from Molecular Hydrogen: II. b 3Σ +u Excitation, J. Phys. Soc. Jpn., 1986, vol. 55, no. 9, p. 3031.

    Article  ADS  Google Scholar 

  230. Trajmar, S., Cartwright, D.C., Rice, J.K., Brinkmann, R.T., and Kuppermann, A., Angular Dependence of Low-Energy Electron-Impact Excitation Cross Section of the Lowest Triplet States of H2, J. Chem. Phys., 1968, vol. 49, no. 12, p. 5464.

    Article  ADS  Google Scholar 

  231. Khakoo, M.A.. and Segura, J., Differential Cross Sections for the Electron Impact Excitation of the b 3Σ +u Continuum of Molecular Hydrogen, J. Phys. B: At., Mol. Opt. Phys., 1994, vol. 27, p. 2355.

    Article  ADS  Google Scholar 

  232. Rescigno, T.N., McCurdy, C.W., McKoy, V., Jr., and Bender, C.F., Low-Energy Electron-Impact Excitation of the Hydrogen Molecule, Phys. Rev. A: At., Mol., Opt. Phys., 1976, vol. 13, p. 216.

    ADS  Google Scholar 

  233. Weatherford, C.A., Excitation of the b 3σ +u State of H2 by Electron Impact: Semiclassical Exchange Potentials at Intermediate Energies, Phys. Rev. A: At., Mol., Opt. Phys., 1980, vol. 22, p. 2519.

    ADS  Google Scholar 

  234. Baluja, K.L., Noble, C.J., and Tennyson, J., Electronic Excitation of the b 3Σ +u State of H2 Using R-Matrix Method, J. Phys. B, 1985, vol. 18, p. L851.

    Article  ADS  Google Scholar 

  235. Schneider, B.I. and Collins, L.A., Electronic Excitation of the b 3Σu/+ State of H2 by Electron Impact in the Linear Algebraic Approach, J. Phys. B: At. Mol. Phys., 1985, vol. 18, p. L857.

    Article  ADS  Google Scholar 

  236. Schneider, B.I. and Collins, L.A., Electronic Excitation of Atoms and Molecules Using the Linear-Algebraic Method, Phys. Rev. A: At., Mol., Opt. Phys., 1986, vol. 33, p. 2982.

    ADS  Google Scholar 

  237. Lima, A.M.P., Gibson, T.L., Huo, W.M., and McKoy, V., Cross Sections for Electron Impact Excitation of the b 3Σ +u State of H2: An Application of the Schwinger Multichannel Variational Method, J. Phys. B: At. Mol. Phys., 1985, vol. 18, p. L865.

    Article  ADS  Google Scholar 

  238. Lima, A.M.P., Gibson, T.L., Huo, W.M., and McKoy, V., Cross Sections for Excitation of the b 3Σ +u , a 3Σ +g , and c 3Πu State of H2 by Low-Energy Electron, Phys. Rev. A: At., Mol., Opt. Phys., 1988, vol. 38, p. 4527.

    ADS  Google Scholar 

  239. Holley, T.K., Chung, S., Lin, C.C., and Lee, E.T.P., Excitation Cross Sections of the H2(X 1Σ +g b 3Σ +u ) by Combined Close-Coupling-R-Matrix Method, Phys. Rev. A: At., Mol., Opt. Phys., 1982, vol. 26, no. 4, p. 1852.

    ADS  Google Scholar 

  240. Chung, S., Lin, C.C., and Lee, E.T.P., Dissociation of the Hydrogen Molecule by Electron Impact, Phys. Rev. A: At., Mol., Opt. Phys., 1975, vol. 12, p. 1340.

    ADS  Google Scholar 

  241. Cartwright, D.C. and Kuppermann, A., Electron-Impact Excitation Cross Section for Two Lowest Triplet States of Molecular Hydrogen, Phys. Rev., 1967, vol. 163, p. 86.

    Article  ADS  Google Scholar 

  242. Khare, S.P., Excitation of Hydrogen Molecules by Electron Impact: III. Singlet-Triplet Excitation, Phys. Rev., 1967, vol. 157, p. 107.

    Article  ADS  Google Scholar 

  243. Edelstein, L.A., Anomalous Dissociation of Molecular Hydrogen by Electron Impact, Nature (London), 1958, vol. 182, p. 932.

    Article  ADS  Google Scholar 

  244. Khare, S.P. and Moiseiwitsch, B.L., The Dissociation of Hydrogen Molecules by Electron Impact, Proc. R. Soc. London, Ser. A, 1963, vol. 276, p. 346.

    Article  ADS  Google Scholar 

  245. Ajello, J.M. and Shemansky, D.E., Electron-Impact Excitation Cross Section for Lowest Triplet States of Molecular Hydrogen, Astrophys. J., 1993, vol. 407, p. 820.

    Article  ADS  Google Scholar 

  246. Da Costa, R.F., Da Paixao, F.J., and Lima, M.A.P., Electron-Impact Excitation of H2: Minimal Orbital Basis for Single Configuration Interaction, J. Phys. B: At., Mol. Opt. Phys., 2004, vol. 37, p. L1298.

    Article  Google Scholar 

  247. Cacciatore, M. and Capitelli, M., Cross Sections and Rate Coefficients for Electronic Excitation of the Triplet States of the Hydrogen Molecule in Different Vibrational Levels, Chem. Phys., 1981, vol. 55, p. 67.

    Article  ADS  Google Scholar 

  248. Gryzinski, M., Two-Particle Collisions: I. General Relations for Collisions in Laboratory System, Phys. Rev. A, 1965, vol. 138, p. 305.

    Article  ADS  MathSciNet  Google Scholar 

  249. Gryzinski, M., Two-Particle Collisions: II. Coulomb Collisions in Laboratory System of Coordinates, Phys. Rev. A, 1965, vol. 138, p. 322.

    ADS  MathSciNet  Google Scholar 

  250. Gryzinski, M., Classical Theory of Atomic Collisions: I. Theory of Inelastic Collisions, Phys. Rev. A, 1965, vol. 138, p. 336.

    Article  ADS  MathSciNet  Google Scholar 

  251. Capitelli, M., Celiberto, R., Eletskii, A., and Laricchiuta, A., Electron-Molecule Dissociation Cross-Sections of H2, N2, and O2 in Different Vibrational Levels, At. Plasma-Mater. Interact. Data Fusion, 2001, vol. 9, p. 47.

    Google Scholar 

  252. Celiberto, R., Capitelli, M., and Janev, R.K., Scaling of Electron-Impact Excitation Cross Sections of Vibrationally Excited H2 and D2 Molecules, Chem. Phys. Lett., 1997, vol. 278, p. 154.

    Article  ADS  Google Scholar 

  253. Celiberto, R., Capitelli, M., and Janev, R.K., Scaling of Electron-Impact Dissociative Ionization Cross Sections of Vibrationally Excited Diatomic Molecules, Chem. Phys. Lett., 1996, vol. 256, p. 575.

    Article  ADS  Google Scholar 

  254. Celiberto, R., Laricchiuta, A., and Lamanna, U.T., Electron-Impact Cross Sections of Vibrationally Excited X 1Σ +g H2 and D2 Molecules to Rydberg States, Phys. Rev. A: At., Mol., Opt. Phys., 1999, vol. 60, p. 2091.

    ADS  Google Scholar 

  255. Avakyan, S.V., Il’in, R.N., Lavrov, V.M., and Ogurtsov, G.N., Secheniya protsessov ionizatsii i vozbuzhdeniya UF-izlucheniya pri stolknoveniyakh elektronov ionov i fotonov s atomami i molekulami atmosfernykh gazov. Spravochnik (Ionization and UV Radiation Excitation Cross Sections for Electron, Ion, and Photon Collisions with Atoms and Molecules of Atmospheric Gases: A Handbook), St. Petersburg: Vavilov State Optical Institute, 2000.

    Google Scholar 

  256. Kieffer, L.J. and Dunn, G.H., Electron Impact Ionization Cross Section Data for Atoms, Atomic Ions, and Diatomic Molecules: I. Experimental Data, Rev. Mod. Phys., 1966, vol. 38, p. 1.

    Article  ADS  Google Scholar 

  257. Tawara, H. and Kato, T., Total and Partial Ionization Cross Sections of Atoms and Ions by Electron Impact, At. Data Nucl. Data Tables, 1987, vol. 36, p. 167.

    Article  ADS  Google Scholar 

  258. Rapp, D. and Englander-Golden, P., Total Cross Sections for Ionization and Attachment in Gases by Electron Impact: I. Positive Ionization, J. Chem. Phys., 1965, vol. 43, p. 1464.

    Article  ADS  Google Scholar 

  259. Harrison, H., The Experimental Determination of Ionization Cross Sections of Gases under Electron Impact: Thesis, Washington: Catholic University of America, 1956.

    Google Scholar 

  260. Tate, J.T. and Smith, P.T., The Efficiencies of Ionization and Ionization Potentials of Various Gases under Electron Impact, Phys. Rev., 1932, vol. 39, p. 270.

    Article  ADS  Google Scholar 

  261. Schram, B.L., De Heer, F.J., Van der Wiel, M.J., and Kistemaker, J., Ionization Cross Sections for Electrons (0.6–20 keV) in Noble and Diatomic Gases, Physica (Amsterdam), 1965, vol. 31, p. 94.

    Article  ADS  Google Scholar 

  262. Krisnakumar, E. and Srivastava, S.K., Electron Correlation Effects in the Dissociative Ionization of H2, J. Phys. B: At., Mol. Opt. Phys., 1994, vol. 27, p. L251.

    Article  ADS  Google Scholar 

  263. Straub, H.C., Renault, P., Lindsay, B.G., Smith, K.A., and Stebbings, R.F., Absolute Partial Cross Sections for Electron-Impact Ionization of H2, N2, and O2 from Threshold to 1000 eV, Phys. Rev. A: At., Mol., Opt. Phys., 1996, vol. 54, p. 2146.

    ADS  Google Scholar 

  264. Adamczyk, B., Boerboom, A.I.H., Schram, B.I., and Kistemaker, I., Partial Ionization Cross Sections of He, Ne, H2, and CH4 for Electrons from 20 to 500 eV, J. Chem. Phys., 1966, vol. 44, p. 4640.

    Article  ADS  Google Scholar 

  265. Flannery, M.R., Tai, H., and Albritton, D.L., Cross Sections for the Photoionization of H2(X 1Σ +g , V i = 0 − 14) with the Formation of H +2 (X 2Σ +g , V f = 0−18), and Vibrational Overlaps and R n-Centroids for the Associated Vibrational Transitions, At. Data Nucl. Data Tables, 1977, vol. 20, no. 6, p. 563.

    Article  ADS  Google Scholar 

  266. Rapp, D., Englander-Golden, P., and Briglia, D.D., Cross Sections for Dissociative Ionization of Molecules by Electron Impact, J. Chem. Phys., 1965, vol. 42, p. 4081.

    Article  ADS  Google Scholar 

  267. Celiberto, R., Cives, P., Cacciatore, M., Capitelli, M., and Lamanna, U.T., Direct Electron-Impact Collision Cross Sections Involving Vibrationally Excited D2(V) Molecules Relevant to D Sources, Chem. Phys. Lett., 1990, vol. 169, nos. 1–2, p. 69.

    Article  ADS  Google Scholar 

  268. Celiberto, R., Cacciatore, M., and Capitelli, M., Electron Impact Direct Dissociative-Ionization Cross Sections from Vibrationally Excited H2 Molecules and Translational Energy Distribution Functions of Protons, Chem. Phys., 1990, vol. 140, p. 209.

    Article  Google Scholar 

  269. O’Malley, T.F., Theory of Dissociative Attachment, Phys. Rev., 1966, vol. 150, p. 14.

    Article  ADS  Google Scholar 

  270. Wadehra, J.M., Vibrational Excitation and Dissociative Attachment, in Nonequilibrium Vibrational Kinetics, Capitelli, M., Ed., Berlin: Springer, 1986. Translated under the title Neravnovesnaya kolebatel’naya kinetika. Sbornik, Moscow: Mir, 1989.

    Google Scholar 

  271. Schulz, G.J. and Asundi, R.K., Isotope Effect in the Dissociative Attachment in H2 at Low Energy, Phys. Rev., 1967, vol. 158, p. 25.

    Article  ADS  Google Scholar 

  272. Allan, M. and Wong, S.F., Effect of Vibrational and Rotational Excitation on Dissociative Attachment in Hydrogen, Phys. Rev. Lett., 1978, vol. 41, p. 1791.

    Article  ADS  Google Scholar 

  273. Xu, Y., Gallup, G.A., and Fabrikant, I.I., Dissociative Electron Attachment to Vibrationally and Rotationally Excited H2 and HF Molecules, Phys. Rev. A: At., Mol., Opt. Phys., 2000, vol. 61, p. 052 705.

    Google Scholar 

  274. Xu, Y., Gallup, G.A., and Fabrikant, I.I., Low-Energy e-H2 Scattering: Separation of Dissociative Attachment and Dissociative Channels, Phys. Rev. A: At., Mol., Opt. Phys., 2001, vol. 63, p. 014 703.

    Google Scholar 

  275. Shkarofsky, I.P., Johnston, T.W., and Bachynski, M.P., The Particle Kinetics of the Plasmas, Reading (Massachusetts, United States): Addison-Wesley, 1966. Translated under the title Kinetika chastits plazmy (Kinetics of Plasma Particles), Moscow: Atomizdat, 1969.

    Google Scholar 

  276. Aleksandrov, N.L., Konchakov, A.M., and Son, E.E., Electron Energy Distribution and Kinetic Coefficients of a CO Plasma: II. Vibrationally Excited Molecules, Zh. Tekh. Fiz., 1979, vol. 49, no. 6, p. 1194 706 [Sov. Phys. Tech. Phys. (Engl. Transl.), 1979 vol. 24, no. 6, p. 664].

    Google Scholar 

  277. Brunet, H. and Vincent, P., Predicted Electron-Transport Coefficients at High E/N Values: I. Hydrogen, J. Appl. Phys., 1979, vol. 50, no. 7, p. 4700.

    Article  ADS  Google Scholar 

  278. Shirley, J.A. and Hall, R.J., Vibrational Excitation in H2 and D2 Electric Discharges, J. Chem. Phys., 1977, vol. 67, no. 6, p. 2419.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shakhatov.

Additional information

Original Russian Text © V.A. Shakhatov, Yu.A. Lebedev, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 265–309.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhatov, V.A., Lebedev, Y.A. Collisional-radiative model of hydrogen low-temperature plasma: Processes and cross sections of electron-molecule collisions. High Temp 49, 257–302 (2011). https://doi.org/10.1134/S0018151X11020131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11020131

Keywords

Navigation