Skip to main content
Log in

Estimation of zirconium, hafnium, and tungsten critical parameters

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

On the basis of similarity of thermal expansion of liquid metals and data on the temperature dependence of density of zirconium, hafnium, and tungsten, estimates of the critical parameters of these metals are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young, D.A. and Alder, B.J., Critical Point of Metals from van der Waals Model, Phys. Rev. A: At., Mol., Opt. Phys., 1971, vol. 3, no. 1, p. 364.

    Article  ADS  Google Scholar 

  2. Tkachenko, S.I., Khishchenko, K.V., Vorob’ev, V.S., Levashov, P.R., Lomonosov, I.V., and Fortov, V.E., Metastable States of Liquid Metal under Conditions of Electric Explosion, Teplofiz. Vys. Temp., 2001, vol. 39, no. 5, p. 728 [High Temp. (Engl. Transl.), 2001, vol. 39, no. 5, p. 674].

    Google Scholar 

  3. Fortov, V.E., Dremin, A.N., and Leont’ev, A.A., Evaluation of the Parameters of the Critical Point, Teplofiz. Vys. Temp., 1975, vol. 13, no. 5, p. 1072 [High Temp. (Engl. Transl.), 1975, vol. 13, no. 5, p. 984].

    Google Scholar 

  4. Filippov, L.P., Metody rascheta i prognozirovaniya svoistv veshchestv (Methods for Calculating and Predicting the Properties of Substances), Moscow: Moscow State University, 1988.

    Google Scholar 

  5. Martynyuk, M.M., Analysis of the Temperature Dependence of the Density of Liquid Metals on the Basis of the Law of Corresponding States, Zh. Fiz. Khim., 1984, vol. 58, no. 8, p. 1896.

    Google Scholar 

  6. Apfelbaum, E.M. and Vorob’ev, V.S., Correspondence between the Critical and Zeno-Line Parameters for Classical and Quantum Liquids, J. Phys. Chem. B, 2009, vol. 113, p. 3521.

    Article  Google Scholar 

  7. Likal’ter, A.A., Critical Parameters of Metals, Teplofiz. Vys. Temp., 1985, vol. 23, no. 3, p. 465 [High Temp. (Engl. Transl.), 1985, vol. 23, no. 3, p 371].

    Google Scholar 

  8. Korobenko, V.N. and Savvatimskii, A.I., Liquid Zirconium Properties up to 4100 K (Density, Enthalpy, Heat Capacity, Emissivity, and Resistivity), Zh. Fiz. Khim., 2003, vol. 77, no. 10, p. 1742 [Russ. J. Phys. Chem. A (Engl. Transl.), 2003, vol. 77, no. 10, p. 1564].

    Google Scholar 

  9. Korobenko, V.N. and Savvatimskii, A.I., The Density of Liquid Hafnium from the Melting Point to the Boiling Point, Teplofiz. Vys. Temp., 2007, vol. 45, no. 2, p. 187 [High Temp. (Engl. Transl.), 2007, vol. 45, no. 2, p.159 ].

    Google Scholar 

  10. Koval’, S.V., Kuskova, N.I., and Tkachenko, S.I., Investigation of the Mechanism of Electric Explosion of Conductors and of the Thermal Characteristics of Liquid Metals, Teplofiz. Vys. Temp., 1997, vol. 35, no. 6, p. 876 [High Temp. (Engl. Transl.), 1997, vol. 35, no. 6, p. 863].

    Google Scholar 

  11. Hornung, K., Adiabatic and Isothermal Compressibility in the Liquid State, in Handbook of Thermodynamic and Transport Properties of Alkali Metals (IUPAC: Chemical Data Series No. 30), Ohse, R.W., Ed., Oxford: Blackwell Scientific, 1985, p. 487.

    Google Scholar 

  12. Drotning, W.D., Thermal Expansion of Iron, Cobalt, Nickel, and Copper at Temperatures up to 600 K above Melting, High Temp.-High Pressures, 1981, vol. 13, no. 4, p. 441.

    Google Scholar 

  13. Vukalovich, M.P., Ivanov, A.I., Fokin, L.R., and Yakovlev, A.T., Teplofizicheskie svoistva rtuti (Thermal and Physical Properties of Mercury), Moscow: Izd. Standartov, 1971.

    Google Scholar 

  14. Drotning, W.D., Thermal Expansion of Molten Tin, Lead, and Aluminum to 1300 K, High Temp. Sci., 1979, vol. 11, no. 4, p. 265.

    Google Scholar 

  15. Steinberg, D.J., Simple Relationship between the Temperature Dependence of the Density of Liquid Metals and Their Boiling Temperatures, Metall. Trans., 1974, vol. 5, p. 1341.

    Article  Google Scholar 

  16. Magalinskii, V.B., Sidorenko, S.N., and Filippov, L.P., On the Characteristic Lines on the Temperature-Density Plane, in Statisticheskaya i kvantovaya fizika i ee prilozheniya (Statistical and Quantum Physics and Its Applications), Moscow: P. Lumumba Peoples’ Friendship University, 1986, p. 11.

    Google Scholar 

  17. Apfelbaum, E.M., Vorob’ev, V.S., and Martynov, G.A., Triangle of Liquid-Gas States, J. Phys. Chem. B, 2006, vol. 110, no. 16, p. 8474.

    Article  Google Scholar 

  18. CRC Handbook of Chemistry and Physics, Linde, D.R. and Frederikse, H.P.R., Eds., Boca Raton: CRC Press, 1993.

    Google Scholar 

  19. Paradis, P.-F. and Rhim, W.-K., Thermophysical Properties of Zirconium at High Temperatures, J. Mater. Res., 1999, vol. 14, no. 9, p. 3713.

    Article  ADS  Google Scholar 

  20. Paradis, P.-F., Ishikawa, T., and Yoda, S., Non-Contact Measurements of the Thermophysical Properties of Hafnium-3 Mass% Zirconium at High Temperature, Int. J. Thermophys., 2003, vol. 24, no. 1, p. 239.

    Article  Google Scholar 

  21. Paradis, P.-F., Ishikawa, T., Fujii, R., and Yoda, S., Physical Properties of Liquid and Undercooled Tungsten by Levitation Techniques, Appl. Phys. Lett., 2005, vol. 86, no. 4, p. 041 901.

    Article  Google Scholar 

  22. Ohse, R.W., Babelot, R.-F., Magill, J., and Tetenbaum, M., An Assessment of the Melting, Boiling, and Critical Point Data of the Alkali Metals, in Handbook of Thermodynamic and Transport Properties of Alkali Metals (IUPAC: Chemical Data Series No. 30) Ohse, R.W., Ed., Oxford: Blackwell Scientific, 1985, p. 329.

    Google Scholar 

  23. Jüngst, S., Knuth, B., and Hensel, F., Observation of Singular Diameters in the Coexistence Curves of Metals, Phys. Rev. Lett., 1985, vol. 55, no. 20, p. 2160.

    Article  ADS  Google Scholar 

  24. Hensel, F., Hohl, G.F., Schaumlöffel, D., Pilgrim, W.C., and Franck, E.U., Empirical Regularities in the Behaviour of the Critical Constants of Fluid Alkali Metals, Z. Phys. Chem., 2000, vol. 214, no. 6, p. 823.

    Article  Google Scholar 

  25. Ohse, R.W. and Tippelskirch, H., The Critical Constants of the Elements and of Some Refractory Materials with High Critical Temperatures, High Temp.-High Pressures, 1977, vol. 9, no. 4, p. 367.

    Google Scholar 

  26. Fucke, W. and Seydel, U., Improved Experimental Determination of Critical-Point Data for Tungsten, High Temp.-High Pressures, 1980, vol. 12, no. 4, p. 419.

    Google Scholar 

  27. Filippov, L.P., Svoistva zhidkikh metallov (Properties of Liquid Metals), Moscow: Moscow State University, 1988.

    Google Scholar 

  28. Hess, H., Kloss, A., Rakhel, A., and Shneidenbach, H., Determination of Thermophysical Properties of Fluid Metals by Wire-Explosion Experiments, Int. J. Thermophys., 1999, vol. 20, no. 4, p. 1279.

    Article  Google Scholar 

  29. Rakhel, A.D., Kloss, A., and Hess, H., On the Critical Point of Tungsten, Int. J. Thermophys., 2002, vol. 23, no. 5, p. 1369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Onufriev.

Additional information

Original Russian Text © S.V. Onufriev, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 213–220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onufriev, S.V. Estimation of zirconium, hafnium, and tungsten critical parameters. High Temp 49, 205–212 (2011). https://doi.org/10.1134/S0018151X1102012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X1102012X

Keywords

Navigation