Skip to main content
Log in

Modeling of cluster formation and growth under atomic vapor condensation

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

A model is presented of cluster formation and growth in supersaturated vapor of the clustering material. The model is based on numerical analysis of evolution of the cluster size distribution function. The calculations are performed on the basis of the presented model under cluster plasma parameters specific to the magnetron method of cluster generation. A comparison is made of the numerical experiment results with the estimates made by other authors. The results are presented of the numerical experiment with allowance for coalescence. The results are shown to be in agreement with those of calculations on the basis of the approximate analytical models within the domain of applicability of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smirnov, B.M., Generation of Cluster Beams, Usp. Fiz. Nauk, 2003, vol. 173, no. 6, p. 609 [Phys.-Usp. (Engl. Transl.), 2003, vol. 46, no. 6, p. 589].

    Article  Google Scholar 

  2. Smirnov, B.M., Cluster Plasma, Usp. Fiz. Nauk, 2000, vol. 170, no. 5, p. 495 [Phys.-Usp. (Engl. Transl.), 2000, vol. 43, no. 5, p. 453].

    Article  Google Scholar 

  3. Koch, S.A., Palasantzas, G., Vystavel, T., and De Hosson, J.Th.V., Electron Transport through Molecules: Self-Consistent and Non-Self-Consistent Approaches, Phys. Rev. B: Condens. Matter, 2005, vol. 71, article 085 410.

  4. Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G., Givord, D., and Nogues, J., Beating the Superparamagnetic Limit with Exchange Bias, Nature (London), 2003, vol. 423, p. 850.

    Article  ADS  Google Scholar 

  5. Gupta, P.K. and Hung, C.T., Magnetically Controlled Targeted Micro-Carrier Systems, Life Sci., 1989, no. 44, p. 175.

  6. Wu, E.X., Tang, H.Y., and Jensen, J.H., Applications of Ultrasmall Superparamagnetic Iron Oxide Contrast Agents in the MR Study of Animal Models, NMR Biomed., 2004, no. 17, p. 478.

  7. Hagena, O.F. and Obert, W., Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size, and Test Gas, J. Chem. Phys., 1972, vol. 56, p. 1793.

    Article  ADS  Google Scholar 

  8. Hagena, O.F., in Molecular Beams and Low-Density Gasdynamics, Wegener, P.P., Ed., New York (United States): Marcel Dekker, 1974, p. 93.

    Google Scholar 

  9. Moser, H.O., Falter, H.D., Hagena, O.F., Henkes, P.R.W., and Klingelhöfer, R., Cluster Ion Acceleration as a Means of Producing Multiampere Particle Beams in the Energy Range of 1 eV to 1 keV/Atom, Surf. Sci., 1981, vol. 106, p. 569.

    Article  ADS  Google Scholar 

  10. Gspann, J., On the Phase of Metal Clusters, Z. Phys. D: At., Mol. Clusters, 1986, vol. 3, p. 143.

    Article  Google Scholar 

  11. Aleksandrov, M.L. and Kusner, Yu.S., Gazodinamicheskie, molekulyarnye, ionnye i klasterirovannye puchki (Gas-Dynamic, Molecular, Ionic, and Clustered Beams), Leningrad: Nauka, 1989.

    Google Scholar 

  12. Herrman, A., Leutwyler, S., Schumacher, E., and Woeste, L., On Metal-Atom Clusters: IV. Photoionization Thresholds and Multiphoton Ionization Spectra of Alkali-Metal Molecules, Helv. Chim. Acta, 1978, vol. 61, p. 453.

    Article  Google Scholar 

  13. Whetten, R.L., Cox, D.M., Trevor, D.J., and Kaldor, A., Free Iron Clusters React Readily with Oxygen and Hydrogen Sulfide, but Are Inert toward Methane, J. Phys. Chem., 1985, vol. 89, p. 566.

    Article  Google Scholar 

  14. Haberland, H., von Issendorff, B., Yufeng, J., and Kolar, T., Transition to Plasmonlike Absorption in Small Hg Clusters, Phys. Rev. Lett., 1992, vol. 69, p. 3212.

    Article  ADS  Google Scholar 

  15. Haberland, H., Karrais, M., Mall, M., and Thurner, Y., Thin Films from Energetic Cluster Impact: A Feasibility Study, J. Vac. Sci. Technol., A, 1992, vol. 10, p. 3266.

    Article  ADS  Google Scholar 

  16. Haberland, H., Moseler, M., Qiang, Y., Rattunde, O., Reiners, T., and Thurner, Y., Energetic Cluster Impact (ECI): A New Method for Thin-Film Formation, Surf. Rev. Lett., 1996, vol. 3, no. 1, p. 887.

    Article  Google Scholar 

  17. Haberland, H., Insepov, Z., and Moseler, M., Molecular-Dynamics Simulation of Thin-Film Growth by Energetic Cluster Impact, in Beam Processing of Advanced Materials: Proceedings of the Second International Conference on Beam Processing of Advanced Materials, Cleveland, Ohio, United States, October 30–November 2, 1995, Singh, J., Mazumder, J., and Copley, S.M., Eds., Cleveland: ASM International (OH), 1996.

    Google Scholar 

  18. Kesälä, E., Kuronen, A., and Nordlund, K., Molecular Dynamics Simulation of Pressure Dependence of Cluster Growth in Inert Gas Condensation, Phys. Rev. B: Condens. Matter., 2007, vol. 75, article 174 121.

  19. Gafner, S.L. and Gafner, Yu.Ya., Analysis of Gas-Phase Condensation of Nickel Nanoparticles, Zh. Eksp. Teor. Fiz., 2008, vol. 134, no. 4, p. 831 [JETP (Engl. Transl.), 2008, vol. 107, no. 4, p. 712].

    Google Scholar 

  20. Kashtanov, P.V., Smirnov, B.M., and Hippler, R., Magnetron Plasma and Nanotechnology, Usp. Fiz. Nauk, 2007, vol. 177, no. 5, p. 473 [Phys.-Usp. (Engl. Transl.), 2007, vol. 50, no. 5, p. 455].

    Article  Google Scholar 

  21. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge: Cambridge University Press, 1952.

    Google Scholar 

  22. Ferziger, J.H. and Kaper, H.G., Mathematical Theory of Transport Processes in Gases, Amsterdam (The Netherlands): North-Holland, 1972.

    Google Scholar 

  23. Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon, 1994.

    Google Scholar 

  24. Bird, G.A., Molecular Gas Dynamics, Oxford: Oxford University Press, 1976–1979. Translated under the title Molekulyarnaya gazovaya dinamika, Moscow: Mir, 1981.

    Google Scholar 

  25. Oslon, T. and Hamill, P., A Time-Dependent Approach to the Kinetics of Homogeneous Nucleation, J. Chem. Phys., 1996, vol. 104, p. 210.

    Article  ADS  Google Scholar 

  26. Smirnov, B.M., Clusters and Small Particles: In Gases and Plasmas, New York: Springer, 2000.

    Book  Google Scholar 

  27. Smirnov, B.M., Clusters in Expanding Plasma, Plasma Chem. Plasma Process., 1993, vol. 13, p. 673.

    Article  Google Scholar 

  28. Smirnov, B.M., Processes in Expanding and Condensing Gases, Usp. Fiz. Nauk, 1994, vol. 164, no. 7, p. 665 [Phys.-Usp. (Engl. Transl.), vol. 37, no. 7, p. 621].

    Article  Google Scholar 

  29. Lifshitz, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika, in Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika, Moscow: Fizmatlit, 2002, vol. 10. Translated under the title Physical Kinetics, in Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, Oxford: Butterworth-Heinemann, 2002, vol. 10.

    Google Scholar 

  30. Schmelzer, J.W.P., Repke, G., and Slezov, V.V., Shapes of Cluster Size Distributions Evolving in Nucleation-Growth Processes, Nucleation Theory and Application, Schmelzer, J.W.P., Ed., Berlin: Wiley, 1999, p. 211.

    Google Scholar 

  31. Zhukhovitskii, D.I., Size-Corrected Theory of Homogeneous Nucleation, J. Chem. Phys., 1994, vol. 101, p. 5076.

    Article  ADS  Google Scholar 

  32. Zhukhovitskii, D.I., Khrapak, A.G., and Yakubov, I.T., Kinetics of Slag Condensation in an MHD Generator Channel: Quasi-Stationary Condensation, Teplofiz. Vys. Temp., 1983, vol. 21, no. 6, p. 1197 [High Temp. (Engl. Transl.), 1983, vol. 21, no. 6, p. 920].

    Google Scholar 

  33. Aleksandrov, L.N., Kinetika obrazovaniya i struktura tverdykh sloev (Kinetics of Formation and the Structure of Solid Layers), Novosibirsk: Nauka, 1972.

    Google Scholar 

  34. Meyer, K., Physikalisch Chemische Kristallographie, Leipzig: Grundstoffindustrie, 1968 [in German].

    Google Scholar 

  35. Shyjumon, I., Gopinadhan, M., Ivanova, O., Quaas, M., Wulff, H., Helm, C.A., and Hippler, R., Structural Deformation, Melting Point, and Lattice Parameter Studies of Size Selected Silver Clusters, Eur. Phys. J. D, 2006, vol. 37, p. 409.

    Article  ADS  Google Scholar 

  36. Haberland, H., Hippler, T., Donges, J., Kostko, O., Schmidt, M., and von Issendorff, B., Melting of Sodium Clusters: Where Do the Magic Numbers Come from? Phys. Rev. Lett., 2005, vol. 94, article 035 701.

  37. Martin, T.P., Näher, U., Schaber, H., and Zimmermann, U., Evidence for a Size-Dependent Melting of Sodium Clusters, J. Chem. Phys., 1994, vol. 100, p. 2322.

    Article  ADS  Google Scholar 

  38. Martin, T.P., Shells of Atoms, Phys. Rep., 1996, vol. 273, p. 199.

    Article  ADS  Google Scholar 

  39. Schmidt, M., Kusche, R., Kronmüller, von Issendorff, B., and Haberland, H., Experimental Determination of the Melting Point and Heat Capacity for a Free Cluster of 139 Sodium Atoms, Phys. Rev. Lett., 1997, vol. 79, p. 99.

    Article  ADS  Google Scholar 

  40. Schmidt, M., Kusche, R., von Issendorff, B., and Haberland, H., Irregular Variations in the Melting Point of Size-Selected Atomic Clusters, Nature (London), 1998, vol. 393, p. 238.

    Article  ADS  Google Scholar 

  41. Smirnov, B.M. and Berry, R.S., Phase Transitions in Simple Atomic Systems, Heidelberg: Springer, 2007.

    Google Scholar 

  42. Beck, T.L., Jellinek, J., and Berry, R.S., Rare Gas Clusters: Solids, Liquids, Slush, and Magic Numbers, J. Chem. Phys., 1987, vol. 87, p. 545.

    Article  ADS  Google Scholar 

  43. Arslan, H. and Güven, M.H., Melting Dynamics and Isomer Distributions of Small Metal Clusters, New J. Phys., 2005, vol. 7, p. 60.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kashtanov.

Additional information

Original Russian Text © A.V. Goncharov, P.V. Kashtanov, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 187–195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, A.V., Kashtanov, P.V. Modeling of cluster formation and growth under atomic vapor condensation. High Temp 49, 178–186 (2011). https://doi.org/10.1134/S0018151X11010068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11010068

Keywords

Navigation