Skip to main content
Log in

Molecular-dynamic modeling of the spectral characteristics of the ozone-water cluster system

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

The absorption of one to six ozone molecules by the (H2O)25 cluster is studied by the method of molecular dynamics under near-atmospheric conditions. The capture of O3 molecules by a water cluster produces a decrease in the integral intensity of IR absorption, reflection, and Raman spectra. IR absorption spectra are highly sensitive to the number of ozone molecules absorbed by a water cluster. The observed photon emission time and the radiation intensity of a dispersed aqueous system with absorbed ozone molecules are appreciably reduced relative to the analogous characteristics of a pure water cluster system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmatskaya, E.V., Apps, C.J., Hillier, I.H., Masters, A.J., Watt, N.E., and Whitehead, J.C., Formation of H2SO4 from SO3 and H2O, Catalysed in Water Clusters, Chem. Commun., 1997, no. 7, p. 707.

  2. Ryabinkin, I.G., Novakovskaya, Yu.V., and Stepanov, N.F., Possible Transformations of the Ozone Molecule in the Presence of Water Associates, Zh. Fiz. Khim., 2006, vol. 80, no. 1, p. 117 [Russ. J. Phys. Chem. A (Engl. Transl.), 2006, vol. 80, no. 1, p. 106].

    Google Scholar 

  3. Tachikawa, H. and Abe, S., Structures and Excitation Energies of Ozone-Water Clusters O3(H2O)n (n = 1–4), Inorg. Chim. Acta, 2005, vol. 358, p. 288.

    Article  Google Scholar 

  4. Tachikawa, H. and Abe, S., Spectral Shifts of Ozone Molecule by the Complex Formation with a Water Molecule, Chem. Phys. Lett., 2006, vol. 432, p. 409.

    Article  ADS  Google Scholar 

  5. Galashev, A.E., Chukanov, V.N., and Galasheva, O.A., Dielectric Characteristics of O2(H2O)i and (O2)2(H2O)i Clusters: Computer-Aided Experiment, Kolloidn. Zh., 2006, vol. 68, no. 2, p. 155 [Colloid J. (Engl. Transl.), 2006, vol. 68, no. 2, p. 131].

    Google Scholar 

  6. Novruzova, O.A., Chukanov, V.N., and Galashev, A.E., Computer-Aided Study of Oxygen Absorption by Water Clusters: IR Spectra of Heteroclusters, Kolloidn. Zh., 2006, vol. 68, no. 4, p. 505 [Colloid J. (Engl. Transl.), 2006, vol. 68, no. 4, p. 462].

    Google Scholar 

  7. Novruzova, O.A., Spectral Characteristics of Aqueous Dispersions Enriched in Oxygen, Zh. Obshch. Khim., 2006, vol. 76, no. 11, p. 1773 [Russ. J. Gen. Chem. (Engl. Transl.), 2006, vol. 76, no. 11, p. 1698].

    Google Scholar 

  8. Novruzova, O.A. and Galashev, A.E., Numerical Simulation of IR Absorption, Reflection, and Scattering in Dispersed Water-Oxygen Media, Teplofiz. Vys. Temp., 2008, vol. 46, no. 1, p. 66 [High Temp. (Engl. Transl.), 2008, vol. 46, no. 1, p. 60].

    Google Scholar 

  9. Dang, L.X. and Chang, T.-M., Molecular Dynamics Study of Water Clusters, Liquid, and Liquid-Vapor Interface of Water with Many-Body Potentials, J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  ADS  Google Scholar 

  10. Spackman, M.A., Atom-Atom Potentials via Electron Gas Theory, J. Chem. Phys., 1986, vol. 85, p. 6579.

    Article  ADS  Google Scholar 

  11. Spackman, M.A., A Simple Quantitative Model of Hydrogen Bonding, J. Chem. Phys., 1986, vol. 85, p. 6587.

    Article  ADS  Google Scholar 

  12. Hunt, S.W., Roeselova, M., Wang, W., Wingen, L.M., Knipping, E.M., Tobias, D.J., Dabdub, D., and Finlayson-Pitts, B.J., Formation of Molecular Bromine from the Reaction of Ozone with Deliquesced NaBr Aerosol: Evidence for Interface Chemistry, J. Phys. Chem. A, 2004, vol. 108, p. 11 559.

    Article  Google Scholar 

  13. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. 1.

    Google Scholar 

  14. Haile, J.M., Molecular Dynamics Simulation: Elementary Methods, New York: John Wiley and Sons, 1992.

    Google Scholar 

  15. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems in the Dynamics of a Solid Body and the Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  16. Sonnenschein, R., An Improved Algorithm for Molecular Dynamics Simulation of Rigid Molecules, J. Comput. Phys., 1985, vol. 59, p. 347.

    Article  ADS  MATH  Google Scholar 

  17. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika. Tom 8. Elektrodinamika sploshnykh sred, Moscow: Nauka, 1982. Translated under the title Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media, Oxford: Butterworth-Heinemann, 1984.

    Google Scholar 

  18. Fizicheskaya entsiklopediya (Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.

    Google Scholar 

  19. Bresme, F., Equilibrium and Nonequilibrium Molecular-Dynamics of the Central Force Model of Water, J. Chem. Phys., 2001, vol. 115, p. 7564.

    Article  ADS  Google Scholar 

  20. Neumann, M., The Dielectric Constant of Water: Computer Simulations with the MCY Potential, J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  ADS  Google Scholar 

  21. Bosma, W.B., Fried, L.E., and Mukamel, S., Simulation of the Intermolecular Vibrational Spectra of Liquid Water and Water Clusters, J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  ADS  Google Scholar 

  22. Neumann, M., Dielectric Relaxation in Water: Computer Simulations with the TIP4P Potential, J. Chem. Phys., 1986, vol. 85, p. 1567.

    Article  ADS  Google Scholar 

  23. Goggin, P.L. and Carr, C., Far-Infrared Spectroscopy and Aqueous Solutions, in Water Aqueous Solutions, 1986, vol. 37, p. 149.

    Google Scholar 

  24. Fichet, P., Jevais, J.R., Camy-Peyret, C., and Flaud, J.M., Calculation of NLTE Ozone Infrared Spectra, Planet. Space Sci., 1992, vol. 40, p. 1289.

    Article  ADS  Google Scholar 

  25. Andrews, L. and Spiker, R.C., Argon Matrix Raman and Infrared Spectra and Vibrational Analysis of Ozone and the Oxygen-18 Substituted Ozone Molecules, J. Phys. Chem., 1972, vol. 76, p. 3208.

    Article  Google Scholar 

  26. Murphy, W.F., The Rayleigh Depolarization Ratio and Rotational Raman Spectrum of Water Vapor and the Polarizability Components for the Water Molecule, J. Chem. Phys., 1977, vol. 67, p. 5877.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, O.R. Rakhmanova, O.A. Novruzova, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 201–206.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Rakhmanova, O.R. & Novruzova, O.A. Molecular-dynamic modeling of the spectral characteristics of the ozone-water cluster system. High Temp 49, 193–198 (2011). https://doi.org/10.1134/S0018151X11010056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11010056

Keywords

Navigation