Skip to main content
Log in

Crisis phenomena in metal hydride hydrogen storage facilities

  • New Energetics
  • Published:
High Temperature Aims and scope

Abstract

We present the results of experimental studies of heat and mass transfer processes in a metal hydride reactor under absorption and release of pure hydrogen. The hydrogen absorption/release reaction is shown to proceed in three stages: (I) heating/cooling of the absorbing material bed up to the reaction temperature; (II) equilibrium absorption/release; and (III) reaction completion. The transition from the first stage to the second is accompanied by a sharp decrease in the hydrogen flow rate at the reactor input/output. The crisis is caused by the ineffective pick-up/application of hydrogen absorption/release heat from/to the absorbing material bed. The reactor charging/discharging operation modes balanced against heat transfer make it possible to avoid crisis and to proceed under a constant flow rate of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malyshenko, S.P. and Nazarova, O.V., Accumulation of Hydrogen, At.-Vodorodnaya Energ. Tekhnol., 1988, no. 8, p. 155.

  2. Verbetsky, V.A., Malyshenko, S.P., Mitrokhin, S.V., Solovei, V.V., and Shmal’ko, Yu.F., Metal Hydrides: Properties and Practical Applications: Review of the Works in CIS-Countries, Int. J. Hydrogen Energy, 1998, vol. 23, no. 12, p. 1165.

    Article  Google Scholar 

  3. Tarasov, B.P., Burnasheva, V.V., Lototskii, M.V., and Yartys’, V.A., Methods for Storage of Hydrogen and Possibilities for Using Metal Hydrides, Altern. Energ. Ekol., 2005, no. 12, p. 14.

  4. Besancon, B., Hasanov, V., Imbault-Lastapis, R., Benesch, R., Barrio, M., and Molnvik, M.J., Hydrogen Quality from Decarbonized Fossil Fuels to Fuel Cells, Int. J. Hydrogen Energy, 2009, vol. 34, no. 5, p. 2350.

    Article  Google Scholar 

  5. Sun, D.W. and Deng, S.J., A Theoretical Model Predicting the Effective Thermal Conductivity in Powdered Metal Hydride Beds, Int. J. Hydrogen Energy, 1990, vol. 15, no. 5, p. 331.

    Article  Google Scholar 

  6. Artemov, V.I., Lazarev, D.O., Yan’kov, G.G., Borzenko, V.I., Dunikov, D.O., and Malyshenko, S.P., The Effect of Non-Absorbable Gas Impurities on Heat and Mass Transfer in Metal-Hydride Devices for Storage and Purification of Hydrogen, Teplofiz. Vys. Temp., 2004, vol. 42, no. 6, p. 972 [High Temp. (Engl. Transl.), 2004, vol. 42, no. 6, p. 987].

    Google Scholar 

  7. Lee, M., Kim, K.J., Hopkins, R.R., and Gawlik, K., Thermal Conductivity Measurements of Copper-Coated Metal Hydrides (LaNi5, Ca0.6Mm0.4Ni5, and LaNi4.75Al0.25) for Use in Metal Hydride Hydrogen Compression Systems, Int. J. Hydrogen Energy, 2009, vol. 34, no. 7, p. 3185.

    Article  Google Scholar 

  8. Melnichuk, M., Silina, N., and Peretti, H.A., Optimized Heat Transfer Fin Design for a Metal-Hydride Hydrogen Storage Container, Int. J. Hydrogen Energy, 2009, vol. 34, no. 8, p. 3417.

    Article  Google Scholar 

  9. Askri, F., Ben Salah, M., Jemni, A., and Ben Nasrallah, S., Optimization of Hydrogen Storage in Metal-Hydride Tanks, Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, p. 897.

    Article  Google Scholar 

  10. MacDonald, B. and Rowe, A., Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks, Int. J. Hydrogen Energy, 2006, vol. 31, no. 12, p. 1721.

    Article  Google Scholar 

  11. Artemov, V.I., Lazarev, D.O., Yan’kov, G.G., et al., Basic Factors Limiting the Rate of Hydrogen Sorption in Metal-Hydride Hydrogen Storage Systems, in Trudy Mezhdunarodnogo simpoziuma po vodorodnoi energetike (Proceedings of the International Workshop on Hydrogen Energy, Moscow Power Engineering Institute, Moscow, Russia, November 1–2, 2005), Moscow: Moscow Power Engineering Institute, 2005, p. 121.

    Google Scholar 

  12. Borovskikh, O.V., Lazarev, D.O., Yan’kov, G.G., and Artemov, V.I., Finning Efficiency of a Metal-Hydride Reactor’s Active Volume, Teploenergetika (Moscow), 2009, no. 3, p. 53 [Term. Eng. (Engl. Transl.), 2009, vol. 56, no. 3, p. 235].

  13. Hardy, B. and Anton, D., Hierarchical Methodology for Modeling Hydrogen Storage Systems. Part I: Scoping Models, Int. J. Hydrogen Energy, 2009, vol. 34, no. 5, p. 2269.

    Article  Google Scholar 

  14. Borzenko, V.I., Dunikov, D.O., and Malyshenko, S.P., Module Cell for Storage and Purification of Hydrogen, RF Patent no. 91 152, Class. MPK: F28D15/00, F17C1/00 (October 14, 2009).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Borzenko, D.O. Dunikov, S.P. Malyshenko, 2011, published in Teplofizika Vysokikh Temperatur, 2011, Vol. 49, No. 2, pp. 256–264.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzenko, V.I., Dunikov, D.O. & Malyshenko, S.P. Crisis phenomena in metal hydride hydrogen storage facilities. High Temp 49, 249–256 (2011). https://doi.org/10.1134/S0018151X11010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X11010019

Keywords

Navigation