Skip to main content
Log in

Increasing the concentration of singlet delta oxygen in discharge products by adding NO2 to oxygen

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

The possibility is considered of increasing the concentration of singlet oxygen (SO), which is obtained in a discharge, by way of adding nitrogen dioxide to the starting gas. The presence of NO2 in the mixture must cause the removal of atomic oxygen formed in the discharge and, accordingly, a decrease in the loss of SO. The simulation of the kinetics of the products of dc discharge in a flow of oxygen is used for determining the values of expected increase in the concentration of SO, as well of the concentration of NO2, which are required for attaining the maximal effect. It is demonstrated that, at oxygen pressures of ∼6 torr and higher, the addition of NO2 may produce a double and higher increase in the concentration of SO in regions of post-discharge flow with transport times of ∼5–10 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasil’eva, A.N., Grishina, I.A., Klopovskii, K.S. et al., Fiz. Plazmy, 1985, vol. 11, no. 2, p. 221.

    Google Scholar 

  2. Klopovskii, K.S., Kovalev, A.S., Lopaev, D.V. et al., Fiz. Plazmy, 1992, vol. 18, no. 12, p. 1606.

    Google Scholar 

  3. Schmiedberger, J., Takahashi, S., and Fujii, H., Proc. SPIE, 1997, vol. 3092, p. 694.

    Article  ADS  Google Scholar 

  4. Shepelenko, A.A., Mikheev, P.A., Kupryaev, N.V., and Voronov, A.I., Izv. Akad. Nauk Ser. Fiz., 2000, vol. 64, no. 7, p. 1259.

    Google Scholar 

  5. Ionin, A.A., Klimachev, Yu.M., Kotkov, A.A. et al., J. Phys. D, 2003, vol. 36, p. 982.

    Article  ADS  Google Scholar 

  6. Laska, L., Masek, K., and Ruzicka, T., Czech. J. Phys., 1979, vol. 29, p. 498.

    Article  ADS  Google Scholar 

  7. Bonnet, J., Fournier, G., Pigache, D., and Lecuiller, M., J. Phys. Paris Lett., 1980, vol. 41, p. 477.

    Google Scholar 

  8. Gousset, G., Touzeau, M., Vialle, M., and Ferreira, C.M., Chem. Plasma Process., 1989, vol. 9, no. 2, p. 189.

    Article  Google Scholar 

  9. Rybkin, V.V., Bessarab, A.B., and Maksimov, A.I., Teplofiz. Vys. Temp., 1996, vol. 34, no. 2, p. 181 (High Temp. (Engl. transl.), vol. 34, no. 2, p. 175).

    Google Scholar 

  10. Atkinson, R., Baulch, D.L., Cox, R.A. et al., J. Phys. Chem. Ref. Data, 1997, vol. 26, p. 1329.

    ADS  Google Scholar 

  11. Vasiljeva, A.N., Klopovskiy, K.S., Kovalev, A.S. et al., J. Phys. D, 2004, vol. 37, p. 2455.

    Article  ADS  Google Scholar 

  12. Braginsky, O.V., Kovalev, A.S., Lopaev, D.V. et al., J. Phys. D, 2006, vol. 39, p. 5183.

    Article  ADS  Google Scholar 

  13. Shepelenko, A.A. and Fomin, E.V., On the Mechanisms of Production and Loss of Molecules O2(1Δ) in Oxygen Plasma of DC Discharge, in 3-i Mezhdunarodnyi simpozium po teoreticheskoi i prikladnoi plazmokhimii (The 3rd International Symposium on Theoretical and Applied Plasma Chemistry), 2002, Ivanovo: Ivanovo State Univ. of Chemical Technology, vol. 1, p. 199.

    Google Scholar 

  14. Shepelenko, A.A., Mikheev, P.A., Voronov, A.I., and Kupryaev, N.V., Singlet Delta Oxygen in Steady Discharge in Vortex Flow of Oxygen, in Materialy po fizike nizkotemperaturnoi plazmy. FNTP-2001 (Materials in Low-Temperature Plasma Physics. FNTP-2001), Petrozavodsk, Part 1, p. 216.

  15. Azyazov, V.N., Kabir, H.M., and Heaven, M.C., Proc. SPIE, 2007, vol. 6454, p. 64540K.

    Article  Google Scholar 

  16. Klopovskii, K.S., Kovalev, A.S., Lopaev, D.V. et al., Fiz. Plazmy, 1992, vol. 18, no. 12, p. 1606.

    Google Scholar 

  17. Klopovskiy, K.S., Lopaev, D.V., Popov, N.A. et al., J. Phys. D, 1999, vol. 32, p. 3004.

    Article  ADS  Google Scholar 

  18. Kajita, S., Ushiroda, S., and Kondo, Y., J. Appl. Phys., 1999, vol. 67, no. 9, p. 4015.

    Article  ADS  Google Scholar 

  19. Laher, R.R. and Gilmore, F.R., J. Phys. Chem. Ref. Data, 1990, vol. 19, no. 1, p. 277.

    Article  ADS  Google Scholar 

  20. Kenner, R.D. and Ogryzlo, E.A., Can. J. Chem., 1983, vol. 61, p. 921.

    Article  Google Scholar 

  21. Napartovich, A.P., Deryudin, A.A., and Kochetov, I.V., J. Phys. D, 2001, vol. 34, p. 1827.

    Article  ADS  Google Scholar 

  22. Shepelenko, A.A., Teplofiz. Vys. Temp., 2007, vol. 45, no. 4, p. 492 (High Temp. (Engl. transl.), vol. 45, no. 4, p. 439).

    Google Scholar 

  23. Carroll, D.L., Verdeyen, J.T., King, D.M. et al., Appl. Phys. Lett., 2004, vol. 85, no. 8, p. 1320.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Shepelenko, E.V. Fomin, 2008, published in Teplofizika Vysokikh Temperatur, vol. 46, No. 6, 2008, pp. 831–835.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shepelenko, A.A., Fomin, E.V. Increasing the concentration of singlet delta oxygen in discharge products by adding NO2 to oxygen. High Temp 46, 763–767 (2008). https://doi.org/10.1134/S0018151X08060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X08060059

PACS numbers

Navigation