Skip to main content
Log in

The formation of a multichannel structure of surface discharge in noble gases

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

An experimental investigation is performed of the spatial structure of highly conducting channels and of the volt-second characteristics of high-current pulsed surface discharge in Ne, Ar, and Xe for the purpose of checking the model of formation of multichannel mode of such discharge suggested in [1]. The experiments are performed in a setup with two versions which differ by the electric supply circuit of the discharge by a factor of 27 as regards the impedance and by a factor of 250 as regards the discharge energy. The time dependence of voltage across the discharge gap is obtained, as well as the dependence of the number of channels in the gap up to the mode of quasi-homogeneous filling of the gap on the discharge voltage at a gas pressure of 30 and 100 kPa. Also given are the results of model calculations of these parameters. The experimental data are compared with the calculation results and demonstrate good agreement; this supports the validity of the adopted model of formation of multichannel mode of the discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trusov, K.K., J. Phys. D, 2006, vol. 39, p. 335.

    Article  ADS  Google Scholar 

  2. Trusov, K.K., Kvantovaya Elektron., 1981, vol. 8, no. 2, p. 293.

    Google Scholar 

  3. Basov, N.G., Logunov, O.A., Nurligareev, D.Kh., and Trusov, K.K., Kvantovaya Elektron., 1981, vol. 8, no. 10, p. 2283.

    Google Scholar 

  4. Krasyuk, I.K., Lipatov, N.I., and Pashinin, P.P., Kvantovaya Elektron., 1976, vol. 3, no. 11, p. 2384.

    Google Scholar 

  5. Borisov, V.M., Vysikailo, F.I., and Khristoforov, O.B., Teplofiz. Vys. Temp., 1983, vol. 27, no. 9, p. 844.

    Google Scholar 

  6. Trusov, K.K., J. Phys. D, 1994, vol. 27, p. 1076.

    Article  ADS  Google Scholar 

  7. Baranov, V.Yu., Borisov, V.M., Vysikailo, F.I., and Khristoforov, O.B., Teplofiz. Vys. Temp., 1984, vol. 22, no. 4, p. 661.

    Google Scholar 

  8. Mesyats, G.A., Development and Investigation of High-Voltage Nanosecond Pulsed Devices, Cand. Sci. (Tech.) Dissertation, Tomsk: Tomsk Polytechnic Inst., 1961.

    Google Scholar 

  9. Vorob’ev, G.A. and Mesyats, G.A., Tekhnika formirovaniya vysokovol’tnykh nanosekundnykh impul’sov (The Techniques of Formation of High-Voltage Nanosecond Pulses), Moscow: Atomizdat, 1963.

    Google Scholar 

  10. Grunberg, R., Z. Naturforsch., 1965, vol. 20a, no. 2, p. 202.

    Google Scholar 

  11. Martin, J.C., Multichannel Gaps, Aldermaston, 1970, SSWA(JCM). 703/27.

  12. Toepler, M., Ann. Phys. Leipzig, 1906, vol. 21, no. 12, p. 193.

    Article  ADS  Google Scholar 

  13. Rompe, R. and Weizel, W., Z. Phys., 1944, vol. 122, p. 636.

    Article  ADS  Google Scholar 

  14. Vollrath, K., Spark Light Sources and High-Speed Spark Cinematography, in High-Speed Physics, Vollrath, K. and Thomer, G., Eds., Vienna: Springer, 1967, p. 87. Iskrovye istochniki sveta i vysokochastotnaya iskrovaya kinematografiya // Fizika bystroprote-kayushchikh protsessov, Moscow: Mir, 1971.

    Google Scholar 

  15. Koval’chuk, B.M., Kremnev, V.V., and Potalitsyn, Yu.F., Sil’notochnye nanosekundnye kommutatory (High-Current Nanosecond Switches), Novosibirsk: Nauka, 1979.

    Google Scholar 

  16. Korolev, Yu.D. and Mesyats, G.A., Avtoemissionnye i vzryvnye protsessy v gazovom razryade (Field-Emission and Explosive Processes in Gas Discharge), Novosibirsk: Nauka, 1982.

    Google Scholar 

  17. Abramson, I.S. and Gegechkori, N.M., Zh. Eksp. Teor. Fiz., 1951, vol. 21, no. 4, p. 484.

    Google Scholar 

  18. Kalantarov, P.L. and Tseitlin, P.A., Raschet induktivnostei: Spravochnik (Inductance Analysis: A Reference Book), Leningrad: Energoatomizdat, 1986.

    Google Scholar 

  19. Trusov, K.K., J. Phys. D, 1999, vol. 32, p. 845.

    Article  ADS  Google Scholar 

  20. Borisov, V.M. and Khristoforov, O.B., Surface Pulsed Discharges, in Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), Fortov, V.E., Ed., Moscow: Nauka/Interperiodica, 2000, Introductory volume, Book II, p. 350.

    Google Scholar 

  21. Trusov, K.K., Kvantovaya Elektron., 1984, vol. 8, no. 10, p. 2107.

    MathSciNet  Google Scholar 

  22. Trusov, A.K. and Trusov, K.K., Kvantovaya Elektron., 1985, vol. 12, no. 2, p. 405.

    Google Scholar 

  23. Trusov, A.K. and Trusov, K.K., Kvantovaya Elektron., 1989, vol. 16, no. 3, p. 468.

    MathSciNet  Google Scholar 

  24. Trusov, K.K., Appl. Opt., 1994, vol. 33, no. 6, p. 949.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.K. Trusov, 2007, published in Teplofizika Vysokikh Temperatur, Vol. 45, No. 5, 2007, pp. 667–669.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trusov, K.K. The formation of a multichannel structure of surface discharge in noble gases. High Temp 45, 601–612 (2007). https://doi.org/10.1134/S0018151X07050057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X07050057

PACS numbers

Navigation