Skip to main content
Log in

The stability of low-amplitude three-dimensional disturbances in a nonequilibrium compressible boundary layer

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

The stability of Tollmien-Schlichting waves propagating at an angle to the main flow in a nonequilibrium compressible supersonic boundary layer is investigated within the linear theory of hydrodynamic stability. The dependences of the critical Reynolds number on the degree of disequilibrium and on the Mach number of undisturbed flow are found at different angles of wave propagation. It is demonstrated that the critical Reynolds number in a nonequilibrium medium may decrease appreciably with increasing degree of disequilibrium, which results in the reduction of the characteristic length of the linear region of transition to turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kogan, E.Ya. and Molevich, N.E., Akust. Zh., 1995, vol. 41, no. 4, p. 613.

    Google Scholar 

  2. Nerushev, O.A. and Novopashin, S.A., Phys. Lett. A, 1997, vol. 232, p. 243.

    Article  ADS  Google Scholar 

  3. Zavershinskii, I.P., Kogan, E.Ya., and Molevich, N.E., Akust. Zh., 1999, vol. 45, no. 1, p. 69.

    Google Scholar 

  4. Bertolotti, F.P., J. Fluid Mech., 1998, vol. 372, p. 93.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Molevich, N.E., Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 1999, no. 5, p. 82.

  6. Gaponov, S.A. and Maslov, A.A., Razvitie vozmushchenii v szhimaemykh potokakh (Development of Disturbances in Compressible Flows), Novosibirsk: Nauka, 1980.

    Google Scholar 

  7. Brown, W.B., Exact Numerical Solution of the Complete Lees-Lin Equations for the Stability of the Compressible Flow, in Summary of Laminar Boundary Layer Control Research, 1964, vol. 2, p. 55.

    Google Scholar 

  8. Gaponov, S.A. and Terekhova, N.M., Aeromekh. Gazov. Din., 2002, no. 4, p. 35.

  9. Dunn, D.W. and Lin, C.C., J. Aeronaut. Sci., 1952, vol. 19, no. 7, p. 491.

    MathSciNet  Google Scholar 

  10. Makaryan, V.G. and Molevich, N.E., Pis’ma Zh. Tekh. Fiz., 2003, vol. 68, no. 3, p. 194.

    Google Scholar 

  11. Schlichting, H., Grenzschichttheorie, Karlsruhe: G. Braun Verlag, 1972. Translated under the title Teoriya pogranichnogo sloya, Moscow: Nauka, 1974.

    Google Scholar 

  12. Kogan, E.Ya. and Molevich, N.E., Zh. Tekh. Fiz., 1985, vol. 55, no. 4, p. 754.

    Google Scholar 

  13. Osipov, A.I. and Uvarov, A.V., Usp. Fiz. Nauk, 1992, vol. 162, no. 11, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.P. Zavershinskii, V.N. Knestyapin, 2007, published in Teplofizika Vysokikh Temperatur, Vol. 45, No. 2, 2007, pp. 235–242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavershinskii, I.P., Knestyapin, V.N. The stability of low-amplitude three-dimensional disturbances in a nonequilibrium compressible boundary layer. High Temp 45, 204–210 (2007). https://doi.org/10.1134/S0018151X07020101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X07020101

PACS numbers

Navigation