Skip to main content
Log in

Features of Few-Layer Phosphorene Structure Synthesis by Plasma-Assisted Electrochemical Exfoliation of Black Phosphorus

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A comparative study has been conducted on the cathode electrolysis plasma emission spectra recorded during the plasma-assisted electrochemical exfoliation of black phosphorus and graphite under maximally identical experimental conditions. It has been found that in the case of black phosphorus exfoliation, the concentration of active intermediates (OH radicals and O atoms) in electrolytic plasma is significantly lower than that in the case of the graphite electrode. It has been assumed that this effect is due to the fact that the rate of interaction of the above intermediates with the synthesized phosphorene structures is significantly higher than the rate of interaction with graphene-like particles. This assumption has been confirmed by the detection of a significantly higher oxygen content in the exfoliation products of black phosphorus than the oxygen content in the synthesized carbon nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tiouitchi, G., El Manjli, F., Mounkachi, O., Mahmoud, A., Boschini, F., Kara, A., Oughaddou, H., Hamedoun, M., Benyoussef, A., and Ait, A.M., Jordan J. Phys., 2020, vol. 13, p. 149.

    Google Scholar 

  2. Zhang, Y., Jiang, Q., Lang, P., Yuan, N., and Tang, J., J. Alloys Compd., 2021, vol. 850, p. 156580.

    Article  CAS  Google Scholar 

  3. Goswami, A. and Gawande, M.B., Front. Chem. Sci. Eng., 2019, vol. 13, p. 296.

    Article  Google Scholar 

  4. Shu, C., Zhou, J., Jia, Z., Zhang, H., Liu, Z., Tang, W., and Sun, X., Chem.-Eur. J., 2022, vol. 28, p. e202200857.

    Article  CAS  PubMed  Google Scholar 

  5. Srivastava, R., Nouseen, S., Chattopadhyay, J., Meng, W.P., Ngoc, S.D., and Prasad, B.B., Energy Technol., 2021, vol. 9, p. 2000741.

    Article  CAS  Google Scholar 

  6. Valappi, M.O., Alwarappan, S., and Pillai, V.K., Nanoscale, 2022, vol. 14, p. 1037.

    Article  Google Scholar 

  7. Xue, X-X., Shen, S., Jiang, X., Sengdala, P., Chen, K., and Feng, Y., J. Phys. Chem. Lett., 2019, vol. 10, p. 3440.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y., He, M., Ma, S., Yang, C., Yu, M., Yin, G., and Zuo, P., J. Phys. Chem. Lett., 2020, vol. 11, p. 2708.

    Article  CAS  PubMed  Google Scholar 

  9. Kochergin, V.K., Manzhos, R.A., Komarova, N.S., Kotkin, A.S., Krivenko, A.G., Krushinskaya, I.N., and Pelmenev, A.A., High Energy Chem., 2022, vol. 56, p. 487.

    Article  CAS  Google Scholar 

  10. Krivenko, A.G., Manzhos, R.A., Kochergin, V.K., Malkov, G.V., Tarasov, A.E., and Piven, N.P., High Energy Chem., 2019, vol. 53, p. 254.

    Article  CAS  Google Scholar 

  11. Kramida, A., Ralchenko, Yu., Reader, J., and other contributors of NIST ASD Team, NIST Atomic Spectra Database (Version 5.9). https://physics.nist.gov/asd

  12. Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure, vol. IV: Constants of Diatomic Molecules, New York: Van Nostrand Reinhold, 1979, parts 1, 2.

  13. Ochkin, V.N., Spectroscopy of Low Temperature Plasma, Weinheim: Wiley–VCH, 2009.

    Book  Google Scholar 

  14. Bobrovnikov, S.M., Gorlov, E.V., Zharkov, V.I., and Saf’yanov, A.D., Opt. Atmos. Okeana, 2022, vol. 35, no. 8, p. 613.

    Google Scholar 

  15. Belkin, P.N. and Kusmanov, S.A., Surf. Eng. Appl. Electrochem., 2021, vol. 57, no. 1, p. 19.

    Article  Google Scholar 

  16. Dittrich, K. and Fuchs, H., Anal. At. Spectrom., 1990, vol. 5, p. 39.

    Article  CAS  Google Scholar 

  17. Ambrosi, A., Bonanni, A., and Pumera, M., Nanoscale, 2011, vol. 3, no. 5, p. 2256.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-23-00774, and performed using the equipment of the Shared-Use Analytical center at the Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences. The electrolytic plasma emission spectra were measured as part of a basic research program (no. 122040500073-4) and a state order (subject no. FFSG-2024-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Kochergin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochergin, V.K., Manzhos, R.A., Komarova, N.S. et al. Features of Few-Layer Phosphorene Structure Synthesis by Plasma-Assisted Electrochemical Exfoliation of Black Phosphorus. High Energy Chem 58, 328–331 (2024). https://doi.org/10.1134/S0018143924700073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143924700073

Keywords:

Navigation