Skip to main content
Log in

Effect of Gamma Radiation Dose on the Crystal Structure of the Ethylene–Tetrafluoroethylene Copolymer

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The effect of gamma radiation dose on the structure of an ethylene–tetrafluoroethylene copolymer has been studied. The copolymer powder has a triclinic crystal structure with space group P-1 and unit cell parameters of a = 8.84 Å, b = 5.34 Å, c = 4.90 Å, α = 99.11°, β = 85.84°, and γ = 90.89°. The coherent scattering region of the copolymer linearly increases from 4.3 to 6.8 nm with an increase in the absorbed gamma radiation dose to 2000 kGy. The degree of crystallinity of the copolymer decreases by 2.1% after irradiation with a dose of up to 100 kGy; after that, with an increase in the dose to 2000 kGy, the degree of crystallinity increases. The absence of significant changes in the crystal structure parameters of the copolymer after irradiation with a dose of up to 2000 kGy suggests that the copolymer crystal structure is resistant to radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Forsythe, J.S. and Hill, D.J.T., Prog. Polym. Sci., 2000, vol. 1, p. 101.

    Article  Google Scholar 

  2. Kerbow, D.L., Modern Fluoropolymers: High Performance Polymers for Diverse Applications, Sheirs, J., Ed., New York: Wiley, 1997, p. 301.

    Google Scholar 

  3. Panshin, Yu.A., Malkevich, S.G., aand Dunaevskaya, Ts.S., Ftoroplasty (Fluoroplastics), Leningrad: Khimiya, 1978.

  4. Wall, L.A., Fluoropolymers, New York: Wiley–Interscience, 1972.

    Google Scholar 

  5. Nasef, M.M., Saidi, H., and Dahlanc, K.Z.M., Polym. Degrad. Stab., 2002, vol. 1, p. 85.

    Article  Google Scholar 

  6. Chen, J.H., Asano, M., Yamaki, T., and Yoshida, M., J. Power Sources, 2006, vol. 1, p. 69.

    Article  Google Scholar 

  7. Ignatievaa L.N., Mashchenkoa V.A., Zvereva G.A., Ustinova A.Yu., Slobodyuka A.B., Bouznik, V.M., J. Fluorine Chem., 2020, vol. 231, p. 109460.

    Article  Google Scholar 

  8. Sun, L., Xiao, Ch., Zhao, J., An, Sh., and Zhang, Sh., Text. Res. J., 2018, vol. 88, no. 10, p. 1112.

    Article  CAS  Google Scholar 

  9. Wilson, F.C. and Starkweather, H.W., J. Polym. Sci., Part B: Polym. Phys., 1973, vol. 11, p. 919.

    CAS  Google Scholar 

  10. Tanigami, T., Yamaura, K., Matsuzawa, Sh., Ishikawa, M., Mizoguchi, K., and Miyasaka, K., Polymer, 1986, vol. 27, p. 999.

    Article  CAS  Google Scholar 

  11. Funaki, A., Phongtamrug, S., and Tashiro, K., Macromolecules, 2011, vol. 44, p. 1540.

    Article  CAS  Google Scholar 

  12. Zen, H.A., Ribeiro, G., Geraldes, A.N., Souza, C.P., Parra, D.F., and Lugão, A.B., Radiat. Phys. Chem., 2013, vol. 84, p. 136.

    Article  CAS  Google Scholar 

  13. Zhang, X., Chen, F., Su, Zh., and Xie, T., Materials, 2021, vol. 14, p. 1.

    CAS  Google Scholar 

  14. Krzhizhanovskaya, M.G., Firsova, V.A., and Bubnova, R.S., Primenenie metoda Ritvel’da dlya resheniya zadach poroshkovoi difraktometrii. Uchebnoe posobie (Application of the Rietveld Method for Solving Powder Diffractometry Problems: Tutorial), Saint-Petersburg: Sankt-Peterburgskii Univ., 2016.

  15. Will, G., Powder Diffraction: The Rietveld Method and the Two-Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data, Berlin: Springer, 2006.

    Google Scholar 

  16. Momma, K. and Izumi, F., J. Appl. Crystallogr., 2008, vol. 41, p. 653.

    Article  CAS  Google Scholar 

  17. Kiryukhin, D. P., Kichigina, G.A., Allayarov, S.R., and Badamshina, E.R., High Energy Chem., 2019, vol. 53, no. 3, p. 228.

    Article  CAS  Google Scholar 

  18. Sreepad, H.R., Res. Rev. Polym., 2012, vol. 3, p. 117.

    CAS  Google Scholar 

  19. Vorokh, A.S., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, p. 364.

    CAS  Google Scholar 

  20. Tap, T.D., Khiem, D.D., Nguyen, L.L., Hien, N.Q., Luan, L.Q., Thang, P.B., Sawada, Sh., Hasegawa, Sh., and Maekawa, Y., Radiat. Phys. Chem., 2018, vol. 151, p. 186.

    Article  CAS  Google Scholar 

  21. Shujun, W., Jinglin, Y., and Wenyuan, G., Am. J. Biochem. . Biotechnol., 2005, vol. 1, p. 199.

    Article  Google Scholar 

  22. Aziz, Sh.B., Marf, A.S., Dannoun, E.M.A., Brza, M.A., and Abdullah, R.M., Polymers, 2020, vol. 12, p. 2184.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of the research program of Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan for 2020–2024 “Radiation-Stimulated Processes during Nuclear Transmutation of Doped Single-Crystal Silicon” at the Laboratory of radiation physics and solid-state electronics technology and supported by Russian Federation state order no. AAAA-A19-119041090087-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Allayarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashmetov, M.Y., Ismatov, N.B., Demidov, S.V. et al. Effect of Gamma Radiation Dose on the Crystal Structure of the Ethylene–Tetrafluoroethylene Copolymer. High Energy Chem 58, 236–241 (2024). https://doi.org/10.1134/S0018143924020140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143924020140

Keywords:

Navigation