Skip to main content
Log in

Effect of CeO2 Coupling on the Structural, Optical and Photocatalytic Performance of CePO4 Nanoparticles

  • PHOTOCATALYSIS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This research work presents the synthesis and characterization of CeO2 coupled CePO4 nanocomposites using a hydrothermal technique to examine the coupled composites photocatalytic activity. Stru-ctural, optical and morphological characteristics of the compounds were analysed using XRD, FTIR, UV-DRS, PL, SEM, and EDS techniques. Rietveld refinement provided valuable insights into their structural properties. A 3D model was constructed to illustrate the successful coupling of CeO2 and CePO4. The photocatalytic performance of CePO4 was significantly increased by coupling with CeO2, and the C70 (70 : 30 weight ratio of CeO2 and CePO4) composite exhibited the highest degradation efficiency for RhB and MO dyes. Reactive oxygen species analysis was conducted to attribute the mechanism of the coupled composite. Furthermore, the synthesized composites demonstrated excellent specificity, stability, and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

DATA AVAILABILITY

The data will be made available on request.

REFERENCES

  1. Luo, J., Zhang, S., Sun, M., Yang, L., Luo, S., and Crittenden, J. C., ACS Nano, 2019, vol. 13, p. 9811. https://doi.org/10.1021/acsnano.9b03649

    Article  CAS  PubMed  Google Scholar 

  2. Wang, L., Ma, X., Huang, G., Lian, R., Huang, J., She, H., and Wang, Q., J. Environ. Sci., 2022, vol. 112, p. 59, https://doi.org/10.1016/j.jes.2021.04.026

    Article  CAS  Google Scholar 

  3. Moradi, M., Hasanvandian, F., Isari, A.A., Hayati, F., Kakavandi, B., and Setayesh, S.R., Appl. Catal., B, 2021, vol. 285, p. 119838. https://doi.org/10.1016/j.apcatb.2020.119838

    Article  CAS  Google Scholar 

  4. Ismail, M., Akhtar, K., Khan, M.I., Kamal, T., Khan, M.A., Asiri, A.M., Seo, J., and Khan, S.B., Curr. Pharm. Des., 2019, vol. 25, p. 3645. https://doi.org/10.2174/1381612825666191021142026

    Article  CAS  PubMed  Google Scholar 

  5. Mondal, S., Environ. Eng. Sci., 2008, vol. 25, p. 383. https://doi.org/10.1089/ees.20070049

    Article  CAS  Google Scholar 

  6. Parul, Kaur, K., Badru, R., Singh, P.P., and Kaushal, S., J. Environ. Chem. Eng., 2020, vol. 8, p. 103666. https://doi.org/10.1016/j.jece.2020103666

    Article  CAS  Google Scholar 

  7. Sun, W., Meng, S., Zhang, S., Zheng, X., Ye, X., Fu, X., and Chen, S., J. Phys. Chem. C., 2018, vol. 122, p. 15409. https://doi.org/10.1021/acs.jpcc.8b03753

    Article  CAS  Google Scholar 

  8. Huang, J.Y., Hsieh, P.L., Naresh, G., Tsai, H.Y., and Huang, M.H., J. Phys. Chem. C., 2018, vol. 122, p. 12944. https://doi.org/10.1021/acs.jpcc.8b03609

    Article  CAS  Google Scholar 

  9. Anwer, H., Mahmood, A., Lee, J., Kim, K.H., Park, J.W., and Yip, A.C.K., Nano Res., 2019, vol. 12, p. 955. https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  10. Ragupathi, V., Raja, M.A., Panigrahi, P., and Subramaniam, N.G., Optik (Stuttg), 2020, vol. 208, p. 164569. https://doi.org/10.1016/j.ijleo.2020.164569

    Article  CAS  Google Scholar 

  11. Bharathi, P., Harish, S., Archana, J., Navaneet-han, M., Ponnusamy, S., Muthamizhchelvan, C., Shimomura, M., and Hayakawa, Y., Appl. Surf. Sci., 2019, vol. 484, p. 884. https://doi.org/10.1016/j.apsusc.2019.03.131

    Article  CAS  Google Scholar 

  12. Shi, L., Li, C., Gu, H., and Fang, D., Mater. Chem. Phys., 2000, vol. 62, p. 62. https://doi.org/10.1016/S0254-0584(99)00171-6

    Article  CAS  Google Scholar 

  13. Kang, M.G., Han, H.E., and Kim, K.J., J. Photochem. Photobiol., A, 1999, vol. 125, p. 119. https://doi.org/10.1016/S1010-6030(99)00092-1

    Article  CAS  Google Scholar 

  14. Naseri, A., Samadi, M., Mahmoodi, N.M., Pourjavadi, A., Mehdipour, H., and Moshfegh, A.Z., J. Phys. Chem. C., 2017, vol. 121, p. 3327. https://doi.org/10.1021/acs.jpcc.6b10414

    Article  CAS  Google Scholar 

  15. Aadil, M., Kousar, T., Hussain, M., Somaily, H.H., Abdulla, A.K., Muhammad, E.R., Al-Abbad, E.A., Salam, M.A., Albukhari, S.M., Baamer, D.F., and Ansari, M.Z., Ceram. Int., 2023, vol. 49, p. 4846. https://doi.org/10.1016/j.ceramint.2022.09.375

    Article  CAS  Google Scholar 

  16. Hori, C.E., Permana, H., Ng, K.Y.S., Brenner, A., More, K., Rahmoeller, K.M., and Belton, D., Appl. Catal., B, 1998, vol. 16, p. 105. https://doi.org/10.1016/S0926-3373(97)00060-X

    Article  CAS  Google Scholar 

  17. Li, Q., Song, L., Liang, Z., Sun, M., Wu, T., Huang, B., Luo, F., Du, Y., and Yan, C.-H., Adv. Energy Sust. Res., 2021, vol. 2, p. 2000063. https://doi.org/10.1002/aesr.202000063

    Article  CAS  Google Scholar 

  18. Nadeem, M., Khan, R., Afridi, K., Nadhman, A., Ullah, S., Faisal, S., Mabood, Z.U., Hano, C., and Abbasi, B.H., Int. J. Nanomed., 2020, vol. 15, p. 5951. https://doi.org/10.2147/IJN.S255784

    Article  CAS  Google Scholar 

  19. Kusmierek, E., Catalysts, 2020, vol. 10, p. 1. https://doi.org/10.3390/catal10121435

    Article  CAS  Google Scholar 

  20. Takita, Y., Qing, X., Takami, A., Nishiguchi, H., and Nagaoka, K., Appl. Catal., A, 2005, vol. 296, p. 63. https://doi.org/10.1016/j.apcata.2005.07.049

  21. Cao, M., Hu, C., Wu, Q., Guo, C., Qi, Y., and Wang, E., Nanotechnology, 2005, vol. 16, p. 282. https://doi.org/10.1088/0957-4484/16/2/018

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, C., Chen, F., Yi, H., and Lai, G., Mater. Lett., 2021, vol. 284, p. 129032. https://doi.org/10.1016/j.matlet.2020.129032

    Article  CAS  Google Scholar 

  23. Abima, S., and Sumathi, S., J. Solid State Chem., 2023, vol. 324, p. 124140. https://doi.org/10.1016/j.jssc.2023.124140

    Article  CAS  Google Scholar 

  24. Zhu, Z., Zhang, K., Zhao, H., and Zhu, J., Solid State Sci., 2017, vol. 72, p. 28. https://doi.org/10.1016/j.solidstatesciences.2017.08.011

    Article  CAS  Google Scholar 

  25. Bouddouch, A., Amaterz, E., Bakiz, B., Taoufyq, A., Guinneton, F., Villain, S., Valmalette, J.C., Gavarri, J.R., and Benlhachemi, A., Optik (Stuttg), 2021, vol. 238, p. 166683. https://doi.org/10.1016/j.ijleo.2021.166683

    Article  CAS  Google Scholar 

  26. Klochkov, V., J. Photochem. Photobiol., A, 2015, vol. 310, p. 128. https://doi.org/10.1016/j.jphotochem.2015.05.019

    Article  CAS  Google Scholar 

  27. Sherly, E.D., Vijaya, J.J., and Kennedy, L.J., J. Mol. Struct., 2015, vol. 1099, p. 114. https://doi.org/10.1016/j.molstruc.2015.05.057

    Article  CAS  Google Scholar 

  28. Fauzi, A.A., Jalil, A.A., Hassan, N.S., Aziz, F.F.A., Hussain, I., Saravanan, R., and Vo, D.N., Chemosphere, 2022, vol. 286, p. 131651. https://doi.org/10.1016/j.chemosphere.2021.131651

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, Y., and Guan, H., J. Cryst. Growth, 2003, vol. 256, p. 156. https://doi.org/10.1016/S0022-0248(03)01301-0

    Article  CAS  Google Scholar 

  30. Barreca, D., Gasparotto, A., Maccato, C., Maragno, C., and Tondello, E., Langmuir, 2006, vol. 22, p. 8639. https://doi.org/10.1021/la061052q

    Article  CAS  PubMed  Google Scholar 

  31. Sisira, S., Alexander, D., Thomas, K., Vimal, G., Mani, K.P., Biju, P.R., Unnikrishnan, N.V., and Joseph, C., Mater. Res. Express, 2017, vol. 4, p. 025010. https://doi.org/10.1088/2053-1591/aa5a27

    Article  CAS  Google Scholar 

  32. Shi, J.J., Feng, H.J., Qv, C.L., Zhao, D., Hong, S.G., and Zhang, N., Appl. Catal., A, 2018, vol. 561, p. 127. https://doi.org/10.1016/j.apcata.2018.05.028

  33. Lalla, E.A., Shkolyar, S., Gilmour, C.M., Lozano-Gorrín, A.D., Konstantinidis, M., Freemantle, J., and Daly, M.G., J. Mol. Struct., 2021, vol. 1223, p. 129150. https://doi.org/10.1016/j.molstruc.2020.129150

    Article  CAS  Google Scholar 

  34. Zeng, Y., Wang, Y., Zhang, S., Zhong, Q., Rong, W., and Li, X., J. Colloid Interface Sci., 2018, vol. 524, p. 8. https://doi.org/10.1016/j.jcis.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  35. Li, M., Fang, J., Wang, C., Zhang, J., Liu, L., Li, Y., Cao, W., and Wei, Q., Biosens. Bioelectron., 2022, vol. 214, p. 114516. https://doi.org/10.1016/j.bios.2022.114516

    Article  CAS  PubMed  Google Scholar 

  36. Noor, M., Al Mamun, M.A., Atique Ullah, A.K.M., Matsuda, A., Kawamura, G., Hakim, M.A., Islam, M.F., and Matin, M.A., J. Phys. Chem. Solids, 2021. https://doi.org/10.1016/j.jpcs.2020.109751

  37. Dhinagaran, M., Elakkiya, V., and Sumathi, S., Opt. Mater., 2021, vol. 111, p. 110546. https://doi.org/10.1016/j.optmat.2020.110546

    Article  CAS  Google Scholar 

  38. Cheng, C., Chen, F., Huang, Y., Cheng, Y., and Lai, G., Mater. Sci. Eng. B, 2021, vol. 272, p. 115319. https://doi.org/10.1016/j.mseb.2021.115319

    Article  CAS  Google Scholar 

  39. Vinodkumar, T., Subramanyam, P., Kumar, K.V.A., Reddy, B.M., and Subrahmanyam, C., J. Chem. Sci., 2019, vol. 131. https://doi.org/10.1007/s12039-018-1588-z

  40. Mittal, A., Sharma, S., Kumari, V., Yadav, S., Chauhan, N.S., and Kumar, N., J. Mater. Sci. Mater. Electron., 2019, vol. 30, p. 17933. https://doi.org/10.1007/s10854-019-02147-6

    Article  CAS  Google Scholar 

  41. Wang, Z., Lin, Z., Shen, S., Zhong, W., and Cao, S., Chin. J. Catal., 2021, vol. 42, p. 710. https://doi.org/10.1016/S1872-2067(20)63698-1

    Article  CAS  Google Scholar 

  42. Yang, H., Mater. Res. Bull., 2021, vol. 142, p. 111406. https://doi.org/10.1016/j.materresbull.2021.111406

    Article  CAS  Google Scholar 

  43. Low, J., Yu, J., Jaroniec, M., Wageh, S., and Al-Ghamdi, A.A., Adv. Mater., 2017, vol. 29, p. 1. https://doi.org/10.1002/adma.201601694

    Article  CAS  Google Scholar 

  44. Xiong, L., and Tang, J., Adv. Energy Mater., 2021, vol. 11, p. 2003216. https://doi.org/10.1002/aenm.202003216

    Article  CAS  Google Scholar 

  45. Wen, Y., Feng, M., Zhang, P., Zhou, H.-C., Sharma, V.K., and Ma, X., ACS EST Eng., 2021, vol. 1, p. 804. https://doi.org/10.1021/acsestengg.1c00051

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge Vellore Institute of Technology, Vellore for providing required facilities to carry out this research work.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sumathi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athique Ahmed, A., Kurian, A., Abima, S. et al. Effect of CeO2 Coupling on the Structural, Optical and Photocatalytic Performance of CePO4 Nanoparticles. High Energy Chem 58, 217–229 (2024). https://doi.org/10.1134/S0018143924020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143924020024

Keywords:

Navigation