Skip to main content
Log in

Antibacterial Activity of Aerogels of Reduced Graphene Oxide Decorated with Silver Nanoparticles

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Samples of reduced graphene oxide aerogels decorated with silver nanoparticles (from 1 to 15 wt %) have been obtained. The reduction of silver ions was performed in the course of the reduction of graphene oxide (GO) and self-assembly of the aerogel with the use of glucose as a green reducing agent. It has been found that all composite graphene aerogel samples GO–Ag have antibacterial properties. The minimum inhibitory concentrations (MICs) of the gram-negative bacteria E. coli and the gram-positive bacteria M. luteus were determined. It was found that the samples GO–Ag10 and GO–Ag15 for E. coli and the samples GO–Ag15 for M. luteus can exhibit both bacteriostatic and bactericidal effects. It was shown that all samples other than GO–Ag15 at MICs effectively inhibited the formation of biofilms of M. luteus bacteria. At the same time, the sample GO–Ag15 at a minimum bactericidal concentration, which is higher than the MIC by a factor of  9.5, effectively destroyed already formed biofilms of M. luteus bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A/RES/71/222—International Decade for Action, Water for Sustainable Development, 2018–2028. https:sdgs.un.org/documents/ares71222-international-decade-action-wa-23198.

  2. Mahapatra, A., Padhi, N., Mahapatra, D., et al., J. Clin. Diagn. Res., 2015, vol. 9, p. DC09.

    PubMed  PubMed Central  Google Scholar 

  3. Douterelo, I., Husband, S., Loza, V., and Boxall, J., Appl. Environ. Microbiol., 2016, vol. 82, p. 4155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mittelman, M.W., Biofouling and Biocorrosion in Industrial Water Systems, Flemming, H.-C. and Geesey, G.G., Eds., Berlin: Spinger, 1991, p. 133.

  5. Flemming, H.C., Wingender, J., Szewzyk, U., et al., Nat. Rev. Microbiol., 2016, vol. 14, p. 563.

    Article  CAS  PubMed  Google Scholar 

  6. Sauer, K., Stoodley, P., Goeres, D.M., et al., Nat. Rev. Microbiol., 2022, vol. 20, p. 608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balcázar, J.L., Subirats, J., and Borrego, C.M., Front. Microbiol., 2015, vol. 6, p. 1216.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khaliha, S., Bianchi, A., Kovtun, A., et al., Sep. Purif. Technol., 2022, vol. 300, p. 121826.

    Article  CAS  Google Scholar 

  9. Bhol, P., Yadav, S., Altaee, A., et al., ACS Appl. Nano Mater., 2021, vol. 4, p. 3274.

    Article  CAS  Google Scholar 

  10. An, Y.C., Gao, X.X., Jiang, W.L., et al., Environ. Res., 2023, vol. 223, p. 115409.

    Article  CAS  PubMed  Google Scholar 

  11. Peng, W., Li, H., Liu, Y., and Song, S., J. Mol. Liq., 2017, vol. 230, p. 496.

    Article  CAS  Google Scholar 

  12. Hu, W., Peng, C., Luo, W., et al., ACS Nano, 2010, vol. 4, p. 4317.

    Article  CAS  PubMed  Google Scholar 

  13. Zou, X., Zhang, L., Wang, Z., and Luo, Y., J. Am. Chem. Soc., 2016, vol. 138, p. 2064.

    Article  CAS  PubMed  Google Scholar 

  14. Akhavan, O. and Ghaderi, E., ACS Nano, 2010, vol. 4, p. 5731.

    Article  CAS  PubMed  Google Scholar 

  15. Gurunathan, S., Han, J.W., Dayem, A.A., Eppakayala, V., and Kim, J.-H., Int. J. Nanomed., 2012, vol. 7, p. 5901.

    Article  CAS  Google Scholar 

  16. Liu, S., Zeng, T.H., Hofmann, M., et al., ACS Nano, 2011, vol. 5, p. 6971.

    Article  CAS  PubMed  Google Scholar 

  17. Carpio, I.E.M., Santos, C.M., Wei, X., and Rodrigues, D.F., Nanoscale, 2012, vol. 4, p. 4746.

    Article  Google Scholar 

  18. Chen, J., Peng, H., Wang, X., et al., Nanoscale, 2014, vol. 6, p. 1879.

    Article  CAS  PubMed  Google Scholar 

  19. Xu, W., Xie, W., Huang, X., et al., Food Chem., 2017, vol. 221, p. 267.

    Article  CAS  PubMed  Google Scholar 

  20. Williams, C.D., Carbone, P., and Siperstein, F.R., ACS Nano, 2019, vol. 13, p. 2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie, C., Lu, X., Han, L., et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 1707.

    Article  CAS  PubMed  Google Scholar 

  22. Ganesamoorthy, R., Vadivel, V.K., Kumar, R., et al., J. Clean. Prod., 2021, vol. 329, p. 129713.

    Article  CAS  Google Scholar 

  23. Gorgolis, G. and Galiotis, C., 2D Mater., 2017, vol. 4, p. 032001.

  24. Zhuang, P., Guo, Z., Wang, S., et al., ACS Omega, 2021, vol. 6, p. 30656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V., et al., J. Power Sources, 2015, vol. 79, p. 722.

    Article  Google Scholar 

  26. MUK (Guidelines) 4.2.1890-04: Determination of the Sensitivity of Microorganisms to Antibacterial Drugs, Approved and entered into effect on March 4, 2004, Moscow: Federal’nyi Tsentr Gossanepidnadzora Minzdrava Rossii, 2004.

  27. Andrews, J.M., J. Antimicrob. Chemotherapy, 2001, vol. 48, p. 5.

    Article  CAS  Google Scholar 

  28. Fisher, J.F. and Mobashery, S., Protein Sci., 2020, vol. 29, p. 629.

    Article  CAS  PubMed  Google Scholar 

  29. Messner, P., Schaffer, C., and Kosma, P., Adv. Carbohydr. Chem. Biochem., 2013, vol. 69, p. 209.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Silhavy, T.J., Kahne, D., and Walker, S., Cold Spring Harb. Perspect. Biol., 2010, vol. 2, p. a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Siddiqi, K.S., Husen, A., and Rao, R.A.K., J. Nanobiotechnol., 2018, vol. 16, p. 2.

    Article  Google Scholar 

  32. Si, Y. and Samulski, E.T., Nano Lett., 2008, vol. 8, p. 1679.

    Article  CAS  PubMed  Google Scholar 

  33. Jeong, H.K., Lee, Y.P., Jin, M.H., et al., Chem. Phys. Lett., 2009, vol. 470, p. 255.

    Article  CAS  Google Scholar 

  34. Cote, L.J., Cruz-Silva, R., and Huang, J., J. Am. Chem. Soc., 2009, vol. 131, p. 11027.

    Article  CAS  PubMed  Google Scholar 

  35. Karthika, P., Rajalakshmi, N., and Dhathathreyan, K.S., Soft Nanosci. Lett., 2012, vol. 2, p. 59.

    Article  CAS  Google Scholar 

  36. Fu, M., Jiao, Q., Zhao, Y., and Li, H., J. Mater. Chem. A, 2014, vol. 2, p. 735.

    Article  CAS  Google Scholar 

  37. Ossonon, B.D. and Bélanger, D., RSC Adv., 2017, vol. 7, p. 27224.

    Article  CAS  Google Scholar 

  38. Shulga, Y.M., Melezhik, A.V., Kabachkov, E.N., et al., Appl. Phys. A, 2019, vol. 125, p. 460.

    Article  Google Scholar 

  39. Bélteky, P., Rónavári, A., Zakupszky, D., et al., Int. J. Nanomed., 2022, vol. 16, p. 3021.

    Article  Google Scholar 

  40. Qamer, S., Romli, M.H., Che-Hamzah, F., et al., Molecules, 2021, vol. 26, p. 5057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guzman-Soto, I., McTiernan, Ch., Gonzalez-Gomez, M., et al., Science, 2021, vol. 24, p. 102443.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of state assignments (state registration no. AAAA-A19-119032690060-9) and the NTI Competence Center “Digital Materials Science: New Materials and Substances” (project “Development of New Functional-Oriented 2D and 3D PCM Including the Use of Graphene and Its Analogues and Methods for Their Production Using Additive Technologies”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Baskakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, S.A., Mumyatova, V.A., Krasnikova, S.S. et al. Antibacterial Activity of Aerogels of Reduced Graphene Oxide Decorated with Silver Nanoparticles. High Energy Chem 57 (Suppl 2), S268–S277 (2023). https://doi.org/10.1134/S0018143923080039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923080039

Keywords:

Navigation