Skip to main content
Log in

Creation of a Powerful Horizontally Oriented Plasma Flow from a Liquid Electrolyte Substance

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Studies have been conducted on obtaining a powerful plasma flow using an electrolyte-cathode discharge. A distinctive feature is that the discharge burns horizontally. A cathode unit has been developed that changes the spatial orientation of the discharge. The process of transferring dissolved substances from liquid electrolyte to plasma and their entrainment by the plasma flow has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kudryavtsev, A.A., Saifutdinov, A.I., Stefanova, M.S., Pramatarov, P.M., and Sysoev, S.S., Phys. Plasmas, 2017, vol. 24, no. 5, p. 054507.

    Article  Google Scholar 

  2. Saifutdinov, A.I., Timerkaev, B.A., and Saifutdinova, A.A., JETP Lett., 2020, vol. 112, p. 405.

    Article  CAS  Google Scholar 

  3. Ganieva, G.R., Ziganshin, D.I., Aukhadeev, M.M., and Timerkaev, B.A., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 3, p. 699.

    Article  CAS  Google Scholar 

  4. Saifutdinov, A.I. and Timerkaev, B.A., J. Eng. Phys. Thermophys., 2012, vol. 85, no. 5, p. 1202.

    Article  CAS  Google Scholar 

  5. Shemakhin, A.Y., Zheltukhin, V.S., Shemakhin, E.Y., Terentev, T.N., and Sofronitsky, A.O., J. Phys.: Conf. Ser., 2020, vol. 1588, no. 1, p. 012018.

    CAS  Google Scholar 

  6. Saifutdinov, A.I., Saifutdinova, A.A., Kashapov, N.F., and Fadeev, S.A., J. Phys.: Conf. Ser., 2016, vol. 669, no. 1, p. 012045.

    Google Scholar 

  7. Yuan, C., Kudryavtsev, A.A., Saifutdinov, A.I., Sysoev, S.S., Stefanova, M.S., Pramatarov, P.M., and Zhou, Z., Phys. Plasmas, 2018, vol. 25, no. 10, p. 104501.

    Article  Google Scholar 

  8. Saifutdinov, A.I., Saifutdinova, A.A., and Timerkaev, B.A., Plasma Phys. Rep., 2019, vol. 44, p. 359.

    Article  Google Scholar 

  9. Saifutdinov, A.I., Plasma Sources Sci. Technol., 2022, vol. 31, no. 9, p. 094008.

    Article  Google Scholar 

  10. Saifutdinova, A.A., Sofronitskiy, A.O., Timerkaev, B.A., and Saifutdinov, A.I., Russ. Phys. J., 2020, vol. 62, p. 2132.

    Article  CAS  Google Scholar 

  11. Timerkaev, B.A., Zalyaliev, B.R., and Saifutdinov, A.I., J. Phys.: Conf. Ser., 2014, vol. 567, no. 1, p. 012032.

    Google Scholar 

  12. Saifutdinov, A.I., Timerkaev, B.A., and Zalyaliev, B.R., High Temp., 2016, vol. 54, p. 632.

    Article  CAS  Google Scholar 

  13. Timerkaev, B.A., Ahmetov, M.M., Zalyaliev, B.R., Petrova, O.A., and Israfilov, D.I., J. Phys.: Conf. Ser., 2014, vol. 567, no. 1, p. 012036.

    Google Scholar 

  14. Saifutdinov, A.I., Timerkaev, B.A., and Zalyaliev, B.R., J. Phys.: Conf. Ser., 2014, vol. 567, no. 1, p. 012031.

    Google Scholar 

  15. Maksimov, A.I. and Khlyustova, A.V., High Energy Chem., 2009, vol. 43, no. 3, p. 149.

    Article  CAS  Google Scholar 

  16. Webb, M.R. and Hieftje, G.M., Anal. Chem., 2009, vol. 81, no. 3, p. 862.

    Article  CAS  PubMed  Google Scholar 

  17. Tazmeeva, R.N., Ziganshin, R.R., and Tazmeev, Kh.K., Vestn. Mashinostr,, 2008, no. 10, p. 87.

  18. Samukawa, S., Hori, M., Rauf, S., Tachibana, K., Bruggeman, P., Kroesen, G.J., Whitehead, C., Murphy, A., Gutso, A., and Starikovskaia, S., J. Phys. D: Appl. Phys., 2012, vol. 45, no. 25, p. 253001.

    Article  Google Scholar 

  19. Valiev, R.I., Gaisin, A.F., Gaisin, F.M., Gumerov, A.Z., Nasibullin, R.T., Sadriev, R.Sh., Sarimov, L.R., and Khafizov, A.A., Izv. Vyssh. Uchebn. Zaved., Fiz., 2014, vol. 57, no. 3, p. 66.

    Google Scholar 

  20. Saifutdinov, A.I. and Sofronitskii, A.O., High Energy Chem., 2021, vol. 55, p. 228.

    Article  CAS  Google Scholar 

  21. Sadikov, K.G., Sofronitskiy, A.O., and Larionov, V.M., J. Phys.: Conf. Ser., 2017, vol. 927, no. 1, p. 012046.

    Google Scholar 

  22. Chistolynov, A.V., Tyuftyaev, A.S., and Gadzhiev, M.G., Prikl. Fiz., 2021, no. 5, p. 5.

  23. Tazmeev, Kh.K., Arslanov, I.M., and Tazmeev, G.Kh., J. Phys.: Conf. Ser., 2014, vol. 567, p. 012001.

    Google Scholar 

  24. Maksimov, A.I., Titov, V.A., and Khlyustova, A.V., High Energy Chem., 2004, vol. 38, no. 3, p. 196.

    Article  CAS  Google Scholar 

  25. Chuchman, M.P., Mesarosh, L.V., Shuaibov, A.K., Kiris, V.V., and Tarasenko, N.V., J. Appl. Spectrosc., 2016, vol. 83, no. 5, p. 742.

    Article  Google Scholar 

  26. Webb, M.R., Andrade, F.J., Gamez, G., McCrindle, R., and Hieftje, G.M., J. Anal. At. Spectrom., 2005, vol. 20, no. 11, p. 1218.

    Article  CAS  Google Scholar 

  27. Khlyustova, A.V., Maksimov, A.I., and Sirotkin, N.A., Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 2, p. 158.

    Article  Google Scholar 

Download references

Funding

This work was supported by the grant of the President of the Russian Federation for state support of young Russian scientists—MK-111.2022.1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Tazmeev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tazmeev, G.K., Tazmeeva, R.N., Kaleeva, A.A. et al. Creation of a Powerful Horizontally Oriented Plasma Flow from a Liquid Electrolyte Substance. High Energy Chem 57 (Suppl 1), S222–S226 (2023). https://doi.org/10.1134/S0018143923070469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923070469

Navigation