Skip to main content
Log in

Features of Surface Ablation under Exposure to High-Brightness VUV Radiation from Pulsed High-Current Discharges

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The article presents experimental study results of processes in the near-surface region of flat samples (Cu, Al, graphite, PTFE) under irradiation with powerful vacuum ultraviolet (VUV) radiation generated by pulsed high-current discharges. The typical exposure time was ≈ 3–50 μs, and the radiation energy in the vacuum-ultraviolet spectrum range was ≈ 1–2 kJ. The main characteristics of the processes were registered on Schlieren photographs and interferograms. The dynamics of vapor-plasma flows formation and development during VUV ablation were studied depending on the spectral composition and intensity of the radiation flux on the surface. The study is relevant for space and plasma technology, development of microelectronic elements, and fundamental research on the interaction of extreme radiation with matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fairushin, I.I., Vasiliev, M.M., and Petrov, O.F., Molecules, 2021, vol. 26, p. 6974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saifutdinov, A.I., Timerkaev, B.A., and Saifutdinov, A.A., JETP Lett., 2020, vol. 112, p. 405.

    Article  CAS  Google Scholar 

  3. Shemakhin, A.Y., Zheltukhin, V.S., Shemakhin, E.Y., Terentev, T., N., and Sofronitsky, A.O., J. Phys.: Conf. Ser., 2020, vol. 1588, no. 1, p. 012018.

    CAS  Google Scholar 

  4. Saifutdinov, A.I. and Sofronitskii, A.O., High Energy Chem., 2021, vol. 55, p. 228.

    Article  CAS  Google Scholar 

  5. Saifutdinov, A.I., Timerkaev, B.A., and Ibragimov, A.R., Tech. Phys. Lett., 2018, vol. 44, p. 164.

    Article  CAS  Google Scholar 

  6. Ganieva, G.R., Ziganshin, D.I., Aukhadeev, M.M., and Timerkaev, B.A., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 3, p. 699.

    Article  CAS  Google Scholar 

  7. Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B., and Saifutdinov, A.I., High Energy Chem., 2019, vol. 53, p. 390-395

    Article  CAS  Google Scholar 

  8. Shemakhin, A.Y., Zheltukhin, V.S., Shemakhin, E.Y., Samsonova, E.S., and Terentev, T.N., J. Phys.: Conf. Ser., 2022, vol. 2388, no. 1, p. 012050.

    Google Scholar 

  9. Huang, T., Wu, Z., Sun, G., Liu, X., and Ling, W.Y.L., Acta Astronaut., 2020, vol. 173, p. 69.

    Article  Google Scholar 

  10. Antropov, N.N., Bogatyy, A.V., Boykachev, V.N., et al., Procedia Eng., 2017, vol. 185, p. 8.

    Article  Google Scholar 

  11. Rosmej, F.B., Astapenko, V.A., and Lisitsa, V.A., Springer Series on Atomic, Optical, and Plasma Physics, vol. 104: Plasma Atomic Physics, Cham: Springer Nature, 2021

    Book  Google Scholar 

  12. Kamrukov, A.S., Kozlov, N.P., Protasov, Yu.S., and Shashkovskii, S.G., High Temp., 1989, vol. 27, no. 1, p. 141.

    Google Scholar 

  13. Shelkovenko, T.A., Tilikin, I.N., Bolkhovitinov, E.A., et al., Plasma Phys. Rep, 2020, vol. 46, no. 1, p. 10.

    Article  Google Scholar 

  14. Zaplotnik, R. and Vesel, A., Polymers, 2020, vol. 12, p. 1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skurat, V., Instrum. Methods Phys. Res., Sect. B, 2003, vol. 208, nos. 1–4, p. 27.

    CAS  Google Scholar 

  16. Lippert, T., Plasma Process. Polym., 2005, vol. 2, p. 525.

    Article  CAS  Google Scholar 

  17. Cherkashina, N.I., Pavlenko, V.I., Noskov, A.V., Shkaplerov, A.N., Kuritsyn, A.A., and Gorodov, A.I., J. Photochem. Photobiol., A, 2021, vol. 405, p. 112970.

    Article  CAS  Google Scholar 

  18. Chen, J., Ding, N., Li, Z., and Wang, W., Prog. Aerosp. Sci., 2016, vol. 83, p. 37.

    Article  Google Scholar 

  19. Kuzenov, V.V., Ryzhkov, S.V., and Varaksin, A.Yu., Appl. Sci., 2022, vol. 12, p. 3610.

    Article  CAS  Google Scholar 

  20. Protasov, Y.S. and Protasov, Yu.Yu., Instrum. Exp. Tech., 2003, vol. 46, p. 206.

    Article  Google Scholar 

  21. Kozlov, N.P. and Protasov, Y.S., Phys. Lett. A, 1978, vol. 67, p. 191.

    Article  Google Scholar 

  22. Protasov, Yu.S., Encyclopedia of Low-Temperature Plasma, Fortov, V.E., Ed., Moscow: Nauka, 2000, vol. 4, p. 232.

    Google Scholar 

  23. Protasov, Yu.S., Chuvashev, S.N., Shchepanyuk, T.S., and Kutyrev, M.V., High Temp., 1992, vol. 30, p. 236.

    CAS  Google Scholar 

  24. Pavlov, A.V., Protasov, Yu.Yu., Telekh, V.D., and Shchepanuk, T.S., Sci. Vis., 2019, vol. 11, no. 3, p. 111.

    Google Scholar 

  25. Pavlov, A.V., Shchepanyuk, T.S., Skriabin, A.S., and Telekh, V.D., Polymers, 2022, vol. 14, p. 3940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Settles, G.S., Schlieren and Shadowgraph Techniques, Berlin: Springer, 2001.

    Book  Google Scholar 

  27. Kreis, T., Handbook of Holographic Interferometry: Optical and Digital Methods. Weinheim: WILEY-VCH, 2005.

    Google Scholar 

  28. Ostrovskaya, G.V., Tech. Phys. 2008, vol. 53, pp. 1103–1128.

    Article  CAS  Google Scholar 

  29. Radiatsionnaya plazmodinamika (Radiation Plasma Dynamics), Protasov, Yu. S., Ed., Moscow: Energoatomizdat, 1991, vol. 1.

    Google Scholar 

  30. Pavlov, A.V., Shchepanyuk, T.S., Chebykin, E.O., Skriabin, A.S., and Telekh, V.D., J. Phys.: Conf. Ser., 2022, vol. 2270, p. 012061. J. Phys.: Conf. Ser.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research and the State Corporation “Rosatom”, project no. 20-21-00087, and was performed at large-scale research facilities “Beam-M” of Bauman Moscow State Technical University (BMSTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Telekh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, A.V., Protasov, Y.Y., Shchepanyuk, T.S. et al. Features of Surface Ablation under Exposure to High-Brightness VUV Radiation from Pulsed High-Current Discharges. High Energy Chem 57 (Suppl 1), S145–S149 (2023). https://doi.org/10.1134/S0018143923070317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923070317

Navigation