Skip to main content
Log in

Simulation of Copper Nanostructure Formation on Silicon Dioxide Microsubstrate Surface

  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The process of copper nanostructure formation on a silicon dioxide substrate was simulated using the molecular dynamics method. The process parameters corresponded to the conditions in a low-pressure gas-discharge plasma. The relationship between the nanostructure formation rate and the main plasma parameters was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sun, Y., Yu, J., and Ma, Q., Sci. Adv., 2018, vol. 4, p. eaau3275.

  2. Kononov, E.A., Vasiliev, M.M., Petrov, O.F., and Vasilieva, E.V., Nanomaterials, 2021, vol. 11, p. 2931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fairushin, I.I., Vasiliev, M.M., and Petrov, O.F., Molecules, 2021, vol. 26, p. 6974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fairushin, I.I., Khrapak, S.A., and Mokshin, A.V., Results Phys., 2020, vol. 19, p. 103359.

    Article  Google Scholar 

  5. Fairushin, I.I., Petrov, O.F., and Vasiliev, M.M., J. Exp. Theor. Phys., 2020, vol. 130, p. 477.

    Article  CAS  Google Scholar 

  6. Fairushin, I.I. and Mokshin, A.V., Fluids, 2023, vol. 8, p. 72.

    Article  Google Scholar 

  7. Fairushin, I.I., High Energy Chem., 2020, vol. 54, p. 477.

    Article  Google Scholar 

  8. Fairushin, I.I., Saifutdinov, A.I., and Sofronitskiy, A.O., High Energy Chem., 2020, vol. 54, p. 150.

    Article  CAS  Google Scholar 

  9. Terentev, T.N., Shemakhin, A.Y., Samsonova, E.S., and Zheltukhin, V.S., Plasma Sources Sci. Technol., 2022, vol. 31, p. 094005.

    Article  Google Scholar 

  10. Fairushin, I.I., Saifutdinov, A.I., Sofronitskiy, A.O., Timerkaev, B.A., and Dautov, G.Yu., J. Phys.: Conf. Ser., 2019, vol. 012088, no. 1, p. 1328.

    Google Scholar 

  11. Fairushin, I.I., Shemakhin, A.Yu., and Khabir’yanova, A.A., High Energy Chem., 2021, vol. 55, p. 399.

    Article  CAS  Google Scholar 

  12. Xia, G., Chen, Z., Saifutdinov, A.I., Eliseev, S., Hu, Y., and Kudryavtsev, A.A., IEEE Trans. Plasma Sci., 2014, vol. 42, no. 10, p. 2768.

    Article  Google Scholar 

  13. Timerkaev, B.A., Zalyaliev, B.R., and Saifutdinov, A.I., J. Phys.: Conf. Ser., 2014, vol. 567, no. 1, p. 012032.

    Google Scholar 

  14. Saifutdinov, A.I. and Timerkaev, B.A., J. Eng. Phys. Thermophys., 2012, vol. 85, no. 5, p. 1202.

    Article  CAS  Google Scholar 

  15. Yuan, C., Kudryavtsev, A.A., Saifutdinov, A.I., Sysoev, S.S., Stefanova, M.S., Pramatarov, P.M., and Zhou, Z., Phys. Plasmas, 2018, vol. 25, no. 10, p. 104501.

    Article  Google Scholar 

  16. Saifutdinov, A.I., Saifutdinova, A.A., and Timerkaev, B.A., Plasma Phys. Rep., 2018, vol. 44, p. 359.

    Article  CAS  Google Scholar 

  17. Timerkaev, B.A., Andreeva, A.A., and Sofronitskiy, A.O., J. Phys.: Conf. Ser., 2017, vol. 789, no. 1, p. 012063.

    Google Scholar 

  18. Shemakhin, A.Y., Zheltukhin, V.S., Shemakhin, E.Y., Terentev, T.N., and Sofronitsky, A.O., J. Phys.: Conf. Ser., 2020, vol. 1588, no. 1, p. 012018.

    CAS  Google Scholar 

  19. Shemakhin, A.Yu., Zheltukhin, V.S., and Shemakhin, E.Yu., J. Eng. Phys. Thermophys., 2021, vol. 94, p. 1336.

    Article  CAS  Google Scholar 

  20. Zheltukhin, V.S., Terentev, T.N., Shemakhin, A.Y., and Samsonova, E.S., J. Phys.: Conf. Ser., 2021, vol. 1870, no. 1, p. 012018.

    Google Scholar 

  21. Shemakhin, A.Yu. and Zheltukhin, V.S., J. Phys.: Conf. Ser., 2017, vol. 927, no. 1, p. 012055.

    Google Scholar 

  22. Budilov, V.V., Ramazanov, K.N., Zolotov, I.V., Khucnutdinov, R.F., and Starovoitov, S.V., J. Eng. Sci. Technol. Rev., 2015, vol. 8, no. 6, p. 22.

    CAS  Google Scholar 

  23. Moskvina, V.A., Astafurova, E.G., Ramazanov, K.N., Maier, G.G., Astafurov, S.V., Melnikov, E.V., and Mironov, Y.P., Mater. Charact., 2019, vol. 153, p. 372.

    Article  CAS  Google Scholar 

  24. Brault, P., Front. Phys, 2018, vol. 6, p. 59.

    Article  Google Scholar 

  25. Plimpton, S., J. Comput. Phys., 1995, vol. 117, no. 1, p. 1.

    Article  CAS  Google Scholar 

  26. Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B: Condens. Matter, 1986, vol. 33, p. 7983.

    Article  CAS  PubMed  Google Scholar 

  27. Hwang, S.-F., Li, Y.-H., and Hong, Z.-H., Comput. Mater. Sci., 2012, vol. 56, p. 85.

    Article  CAS  Google Scholar 

  28. Menon, V.A. and James, S., J. Manuf. Mater. Process., 2018, vol. 2, p. 51.

    CAS  Google Scholar 

  29. Vashishta, P., Kalia, R.K., Nakano, A., and Rino, J.P., J. Appl. Phys., 2007, vol. 101, p. 103515.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-71-10055, https://rscf.ru/project/19-71-10055/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Fairushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fairushin, I.I., Shemakhin, A.Y. Simulation of Copper Nanostructure Formation on Silicon Dioxide Microsubstrate Surface. High Energy Chem 57 (Suppl 1), S41–S44 (2023). https://doi.org/10.1134/S001814392307010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001814392307010X

Keywords:

Navigation