Skip to main content
Log in

Deformation and Strength Properties of a Gamma-Irradiated Plasticized Binder Based on Low-Molecular-Weight Polydiene Urethane Rubbers

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The effect of gamma-radiation doses of 50, 100, and 150 kGy on the deformation and strength properties of a plasticized binder based on low-molecular-weight polydiene urethane rubbers of the PDI-3B brand has been studied. To assess changes in the strength of the plasticized binder depending on the dose of gamma irradiation, the fracture energies were calculated at temperatures of 223, 295, and 323 K. At these test temperatures, the conditional stress increased and deformation slightly decreased depending on the dose of gamma irradiation compared with those of the original sample. Sharp changes in the deformation and strength characteristics occurred at a test temperature of 223 K; the strength of the irradiated samples increased by a factor of more than 4, and the deformation decreased slightly compared to that of the original sample. This trend persisted with an increase in the test temperature, but the difference was almost halved. Such an effect of gamma irradiation on the test material can be explained by the prevalence of crosslinking over degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Molanorouzi, M. and Mohaved, S.O., Polym. Degrad. Stab., 2016, vol. 128, p. 115.

    Article  CAS  Google Scholar 

  2. Sousa, F.D.B., Scuracchio, C.H., Hu, G.-H., and Hoppe, S., Polym. Degrad. Stab., 2017, vol. 138, p. 169.

    Article  Google Scholar 

  3. Xu, O., Li, M., Han, S., Zhu, Y., and Zhang, J., Constr. Build. Mater., 2021, vol. 271, p. 121580.

    Article  CAS  Google Scholar 

  4. Ratnam, C.T., Dubey, K.A., Appadu, S., and Bhardwaj, Y.K., Recycling of Polymer Wastes by Radiation—Report of IAEA Technical Meeting, IAEA, Vienna, 2019, Event code: EVT1804861, p. 47.

  5. Gohs, U., Recycling of Polymer Wastes by Radiation—Report of IAEA Technical Meeting, IAEA, Vienna, 2019, Event code: EVT1804861, p. 26.

  6. Gorbarev, I.N., Vlasov, S.I., Chulkov, V.N., Bludenko, A.V., and Ponomarev, A.V., Radiat. Phys. Chem., 2019, vol. 158, p. 64.

    Article  CAS  Google Scholar 

  7. Allayarov, S.R., Dixon, D.A., and Allayarov, R.S., High Energy Chem., 2020, vol. 54, no. 4, p. 285.

    Article  CAS  Google Scholar 

  8. Gulieva, N.K., Gatamkhanova, G.M., and Mustafaev, I.I., High Energy Chem., 2020, vol. 54, no. 5, p. 336.

    Article  CAS  Google Scholar 

  9. Fazullina, D.D., Mavrina, G.V., and Shaikhiev, I.G., Elektron. Obrab. Mater., 2019, no. 55 (3), p. 58.

  10. Zlobina, I.V., Herald Dagestan State Tech. Univ., Tech. Sci., 2018, no. 45(4), p. 42.

  11. Pyataev, I.V., Use of microwave modification to improve the performance properties of thermoplatics and thermosets, Cand. Sci. (Eng.) Dissertation, Saratov: Saratov State Technical Univ., 2015.

  12. Martin, D., Ighigeanu, D., Mateescu, E., Craciun, G., and Ighigeanu, A., Radiat. Phys. Chem., 2002, vol. 65, p. 63.

    Article  CAS  Google Scholar 

  13. Sainia, L., Guptab, V., Patraa, M.K., Jania, R.K., Shuklaa, A., Narendra Kumara, N., and Dixit, A., J. Alloys Compd., 2021, vol. 869, p. 159360.

    Article  Google Scholar 

  14. Zhai, Y., Zhang, Y., and Ren, W., Mater. Chem. Phys., 2012, vol. 133, no. 1, p. 176.

    Article  CAS  Google Scholar 

  15. Elmahaishi, M.F., Azis, R.S., Ismail, I., and Muhammad, F.D., J. Mater. Res. Technol., 2022.

  16. Ermilov, A.S., Nurullaev, E., and Shakhidzhanyan, K.Z., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, p. 1840.

    Article  CAS  Google Scholar 

  17. Urbanovich, O.V., Davydenko, A.I., Panteleeva, E.A., Sverdlov, R.L., and Shadyro, O.I., High Energy Chem., 2022, vol. 56, no. 3, p. 170.

    Article  CAS  Google Scholar 

  18. Tashmetov, M.Yu., Ismatov, N.B., and Allayarov, S.R., High Energy Chem., 2022, vol. 56, no. 3, p. 175.

    Article  CAS  Google Scholar 

  19. Fedotova, Yu.A., Zur, I.A., Brinkevich, D.I., Brinkevich, S.D., Grinyuk, E.V., Prosolovich, V.S., Movchan, S.A., Remnev, G.E., Linnik, S.A., and Lastovskii, S.B., High Energy Chem, 2022, vol. 56, no. 5, p. 354.

    Article  Google Scholar 

  20. Ermilov, A.S. and Nurullaev, E.M., Mech. Compos. Mater., 2015, vol. 50, no. 6, p. 757.

    Article  Google Scholar 

Download references

Funding

This study was supported by Perm krai (project no. S-26/581).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nurullaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurullaev, E., Oniskiv, V.D., Himenko, L.L. et al. Deformation and Strength Properties of a Gamma-Irradiated Plasticized Binder Based on Low-Molecular-Weight Polydiene Urethane Rubbers. High Energy Chem 57, 484–488 (2023). https://doi.org/10.1134/S0018143923060127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923060127

Keywords:

Navigation