Skip to main content
Log in

Investigation of the Plasma-Chemical Synthesis of Thin Ga2O3 Films Doped with Zn in One Step in Plasma

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A process for fabricating Zn-doped (up to 10 at %) β-Ga2O3 thin films by plasma-enhanced chemical vapor deposition has been studied. High-purity gallium, zinc, and oxygen were used as starting materials, and hydrogen was chosen as the carrier and plasma gas. A low-temperature nonequilibrium RF (40.68 MHz) discharge plasma at a reduced pressure (0.01 torr) was used to initiate chemical reactions of precursors. The plasma-chemical process was monitored using optical emission spectroscopy. Structural properties and morphology of the deposited β-Ga2O3 films were studied by various methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Peelaers, H., Lyons, J.L., Varley, B., and van de Walle, C.G., APL Mater., 2019, vol. 7, p. 022519.

    Article  Google Scholar 

  2. Wang, X.H., Zhang, F.B., Saito, K., Tanaka, T., Nishio, M., and Guo, Q.X., J. Phys. Chem. Solids, 2014, vol. 75, no. 11, p. 1201.

    Article  CAS  Google Scholar 

  3. Skachkov, D. and Lambrecht, W.R.L., Appl. Phys. Lett., 2019, vol. 114, no. 20, p. 202102.

    Article  Google Scholar 

  4. Pearton, S.J., et al., Appl. Phys. Rev., 2018, vol. 5, no. 1, p. 011301.

    Article  Google Scholar 

  5. Higashiwaki, M. and Jessen, G.H., Appl. Phys. Lett., 2018, vol. 112, no. 6, p. 060401.

    Article  Google Scholar 

  6. Mastro, M.A., Kuramata, A., Calkins J., Kim, J., Ren, F., and Pearton, S.J., ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 5, p. 356.

    Article  Google Scholar 

  7. Varley, J.B., Weber, J.R., Janotti, A., and van de Walle, C.G., Appl. Phys. Lett., 2010, vol. 97, no. 14, p. 142106.

    Article  Google Scholar 

  8. Wang, X.H., Zhang, F.B., Saito, K., Tanaka, T., Nishio, M., and Guo, Q.X., J. Phys. Chem. Solids, 2014, vol. 75, no. 11, p. 1201.

    Article  CAS  Google Scholar 

  9. Wei, Y., et al., Semiconductors, 2012, vol. 33, p. 073003.

    Article  Google Scholar 

  10. Meng, L., Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of the Ohio State University, 2020.

  11. Gu, J.H., Lu, Z., Long, L., Zhong, Z.Y., Yang, C.Y., and Hou, J., Mater. Sci. Pol., 2015, vol. 33, p. 470.

    Article  CAS  Google Scholar 

  12. Zhao, H., Hu, J., Chen, S., Xie, Q., and He, J., Ceram. Int., 2016, vol. 42, no. 4, p. 5582.

    Article  CAS  Google Scholar 

  13. Sowmya, P., Kasturi, V., and Shivakumar, G.K., Semiconductors, 2012, vol. 46, no. 12, p. 1545.

    Article  Google Scholar 

  14. Aleksandrova, M., Ivanova, T., Hamelmann, F., Strijkova, V., and Gesheva, K., Coatings, 2020, vol. 10, no. 7, p. 650.

    Article  CAS  Google Scholar 

  15. Mochalov, L.A., Logunov, A.A., and Kudryashov, M.A., J. Phys: Conf. Ser., 2021, no. 1967, p. 012037.

  16. Mochalov, L., Logunov, A., Gogova, D., Letnianchik, A., and Vorotyntsev, V., Opt. Quantum Electron., 2020, vol. 52, no. 12, p. 510.

    Article  CAS  Google Scholar 

  17. Mochalov, L., Logunov, A., Kudryashov, M., Prokhorov, I., Sazanova, T., Yunin, P., Pryakhina, V., Vorotuntsev, I., Malyshev, V., Polyakov, A., and Pearton, S.J., ECS J. Solid State Sci. Technol., 2021, vol. 10, p. 073002.

    Article  CAS  Google Scholar 

  18. Mochalov, L., Logunov, A., Sazanova, T., Kulikov, A., Rafailov, E.U., and Zelentsov, S., 22nd International Conference on Transparent Optical Networks (ICTON), 2020, p. 19991648.

  19. Logunov, A., Mochalov, L., Gogova, D., and Vorotyntsev, V., International Conference on Transparent Optical Networks (ICTON), 2019, p. 8840331.

  20. Mochalov, L., Logunov, A., and Vorotyntsev, V., Sep. Purif. Technol., 2021, vol. 258, p. 118001.

    Article  CAS  Google Scholar 

  21. Mochalov, L., Logunov, A., Kitnis, A., Gogova, D., and Vorotyntsev, V., Sep. Purif. Technol., 2020, vol. 238, p. 116446.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-13-00053 “Development of scientific foundations for the technology of obtaining chemoresistive materials for the electronic nose based on complex nanostructured oxide matrices.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Prokhorov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, L.A., Kudryashov, M.A., Prokhorov, I.O. et al. Investigation of the Plasma-Chemical Synthesis of Thin Ga2O3 Films Doped with Zn in One Step in Plasma. High Energy Chem 57, 509–514 (2023). https://doi.org/10.1134/S0018143923060115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923060115

Keywords:

Navigation