Skip to main content
Log in

Plasma-Enhanced Chemical Vapor Deposition of Thin GaS Films on Various Types of Substrates

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Gallium monosulfide (GaS), a representative of Group III monochalcogenide layered materials, is a wide-bandgap semiconductor. It is considered an ideal material for light detectors in the blue and near ultraviolet ranges of the spectrum. In this work, for the first time, the method of plasma-enhanced chemical vapor deposition (PECVD) was applied to obtain thin GaS films on various substrates, where high-purity gallium and sulfur served as starting materials. To initiate the interaction between the reactants, a nonequilibrium RF discharge (40.68 MHz) plasma at a pressure of 0.1 torr was used. The influence of the substrate nature on the stoichiometry, structure, and surface morphology of GaS films has been studied. The plasma-chemical process was monitored using optical emission spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S., Nat. Nanotechnol., 2012, vol. 7. № 11.P. 699.

    Article  CAS  PubMed  Google Scholar 

  2. Jung, C.S., Shojaei, F., Park, K., Oh, J.Y., Im, H.S., Jang, D.M., and Kang, H.S., ACS Nano, 2015, vol. 9, no. 10, p. 9585.

    Article  CAS  PubMed  Google Scholar 

  3. Haishuang, L., Yu, C., Kexin, Y., Yawei, K., Zhongguo, L., and Yushen, L., Front. Mater., 2021, vol. 8, p. 478.

    Google Scholar 

  4. Cuculescu, E., Evtodiev, I., Caraman, M., and Rusu, M., J. Optoelectron. Adv. Mater., 2006, vol. 8, no. 3, p. 1077.

    CAS  Google Scholar 

  5. Okamoto, N. and Tanaka, H., Mater. Sci. Semicond. Process., 1999, vol. 2, p. 13.

    Article  CAS  Google Scholar 

  6. Jastrzebski, C., Olkowska, K., Jastrzebski, D.J., Wierzbicki, M., Gebicki, W., and Podsiadlo, S., J. Phys.: Condens. Matter, 2018, vol. 31, p. 075303.

    PubMed  Google Scholar 

  7. Hu, P., Wang, L., Yoon, M., Zhang, J., Feng, W., Wang, X., and Xiao, K., Nano Lett., 2013, vol. 13, no. 4, p. 1649.

    Article  CAS  PubMed  Google Scholar 

  8. Gutiérrez, Y., Juan, D., Dicorato, S., Santos, G., Duwe, M., Thiesen, P.H., Giangregorio, M.M., Palumbo, F., Hingerl, K., Cobet, C., García-Fernández, P., Junquera, J., Moreno, F., and Losurdo, M., Opt. Express, 2022, vol. 30, no. 15, p. 27609.

    Article  PubMed  Google Scholar 

  9. Lieth, R.M.A. and van der Maesen, F., Phys. Status Solidi A, 1972, vol. 10, no. 1, p. 73.

    Article  CAS  Google Scholar 

  10. Kipperman, A.H.M. and Vermij, C.J., Nuovo Cimento B, 1969, vol. 63, p. 29.

    Article  CAS  Google Scholar 

  11. Wang, X., Sheng, Y., Chang, R.J., Lee, J.K., Zhou, Y., Li, S., and Warner, J.H., ACS Omega, 2018, vol. 3, no. 7, p. 7897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanz, C., Guillén, C., and Gutiérrez, M.T., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 085108.

    Article  Google Scholar 

  13. Chen, X., Hou, X., Cao, X., Ding, X., Chen, L., Zhao, G., and Wang, X., J. Cryst. Growth, 1997, vol. 173, no. 1, p. 51.ó

    Article  CAS  Google Scholar 

  14. Okamoto, N., Tanaka, H., and Hara, N., Jpn. J. Appl. Phys., 2001, vol. 40, no. 2, p. 104.

    Article  Google Scholar 

  15. Mochalov, L., Logunov, A., Prokhorov, I., Vshivtsev, M., Kudryashov, M., Kudryashova, Y., Malyshev, V., Spivak, Y., Greshnyakov, E., Knyazev, A., Fukina, D., Yunin, P., and Moshnikov, V., Opt. Quantum Electron., 2022, vol. 54, p. 646.

    Article  CAS  Google Scholar 

  16. Shirai, T., Reader, J., Kramida, A.E., and Sugar, J., J. Phys. Chem. Ref. Data, 2007, vol. 36, no. 2, p. 509.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-19-20081, https://rscf.ru/project/22-19-20081/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vshivtsev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, M.A., Mochalov, L.A., Prokhorov, I.O. et al. Plasma-Enhanced Chemical Vapor Deposition of Thin GaS Films on Various Types of Substrates. High Energy Chem 57, 532–536 (2023). https://doi.org/10.1134/S0018143923060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923060097

Keywords:

Navigation