Skip to main content
Log in

Influence of Voltage and Duration of Plasma Pyrolysis of 1,1,2,2-Tetrachloroethane in the Liquid Phase by the Action of Low-Voltage Discharges

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Plasma pyrolysis of 1,1,2,2-tetrachloroethane was carried out in a liquid phase at a dc source voltage of 100–300 V and a process time of 1–5 h. An increase in the dc voltage from 100 to 300 V led to an increase in the conversion of 1,1,2,2-tetrachloroethane from 21.6 to 71.7 wt % for 1 h with an increase in energy consumption for the transformation of 1,1,2,2-tetrachloroethane from 0.20 to 0.28 kW h/mol. As the process time was increased from 1 to 5 h, the conversion of 1,1,2,2-tetrachloroethane increased from 21.6 to 68.9 wt %, and energy consumption increased from 0.20 to 0.33 kW h/mol. Regardless of the conditions of pyrolysis, an increase in the conversion of tetrachloroethane led to a decrease in the yield of tetrachloroethylene and trichloroethylene by a factor of 2–3 due to their conversion into perchlorinated hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Han, F., Li, W., Yu, F., and Cui, Z., Environ. Sci. Pollut. Res., 2014, vol. 21, no. 9, p. 5810.

    Article  CAS  Google Scholar 

  2. Benson, S.W. and Weissman, M., Int. J. Chem. Kinet., 1982, vol. 14, no. 12, p. 1287.

    Article  CAS  Google Scholar 

  3. Kurta, S.A., Volinsky, A.A., and Kurta, M.S., J. Clean. Prod., 2013, vol. 54, p. 150.

    Article  CAS  Google Scholar 

  4. Treger, Y.A. and Flid, M.R., Catal. Ind., 2011, vol. 3, no. 3, p. 271.

    Article  Google Scholar 

  5. Qi, Y., Fenes, E., Ma, H., Wang, Y., Rout, K.R., Fuglerud, T., Piccinini, M., and Chen, D., Appl. Surf. Sci., 2020, vol. 521.

  6. Turner, M.M., Plasma Process. Polym., 2017, vol. 14, nos. 1–2, p. 1600121.

    Article  Google Scholar 

  7. Economou, D.J., Plasma Process. Polym., 2017, vol. 14, nos. 1–2, p. 1600152.

    Article  Google Scholar 

  8. Bruggeman, P.J. and Leys, C., J. Phys. D: Appl. Phys., 2009, vol. 42, no. 5, p. 053001.

    Article  Google Scholar 

  9. Lebedev, Y.A., High Temp., 2018, vol. 56, no. 5, p. 811.

    Article  CAS  Google Scholar 

  10. Oda, T., Takahashi, T., and Kohzuma, S., IEEE Trans. Ind. Appl., 2001, vol. 37, no. 4, p. 965.

    Article  CAS  Google Scholar 

  11. Oda, T., Takahashi, T., and Taka, K., IEEE Trans. Ind. Appl., 1999, vol. 35, no. 2, p. 373.

    Article  CAS  Google Scholar 

  12. Oda, T., J. Electrostat., 2003, vol. 57, nos. 3–4, p. 293.

    Article  CAS  Google Scholar 

  13. Li, C.T., Yang, R., Shih, M., Chen, C.Y., and Hsieh, L.T., J. Chem. Technol. Biotechnol., 2003, vol. 78, no. 7, p. 817.

    Article  CAS  Google Scholar 

  14. Francke, K., Miessner, H., and Rudolph, R., Plasma Chem. Plasma Process., 2000, vol. 20, no. 3, p. 393.

    Article  CAS  Google Scholar 

  15. Kirkpatrick, M., Finney, W., and Locke, B., Plasmas Polym., 2003, vol. 8, no. 3, p. 165.

    Article  CAS  Google Scholar 

  16. Futamura, S. and Yamamoto, T., IEEE Trans. Ind. App-l., 1997, vol. 33, no. 2, p. 447.

    Article  CAS  Google Scholar 

  17. Hsiao, M., Merritt, B., Penetrante, B., Vogtlin, G., and Wallman, P., J. Appl. Phys., 1995, vol. 78, no. 5, p. 3451.

    Article  CAS  Google Scholar 

  18. Magureanu, M., Mandache, N., and Parvulescu, V., Plasma Chem. Plasma Process., 2007, vol. 27, no. 6, p. 679.

    Article  CAS  Google Scholar 

  19. Li, S., Dang, X., Yu, X., Abbas, G., Zhang, Q., and Cao, L., Chem. Eng. J., 2020, vol. 388, p. 124275.

    Article  CAS  Google Scholar 

  20. Mustafa, M., Fu, X., Liu, Y., Abbas, Y., Wang, H., and Lu, W., J. Hazard. Mater., 2018, vol. 347, p. 317.

    Article  CAS  PubMed  Google Scholar 

  21. Gushchin, A.A., Grinevich, V.I., Izvekova, T.V., Kvitkova, E.Y., Tyukanova, K.A., and Rybkin, V.V., Plasma Chem. Plasma Process., 2019, vol. 39, no. 2, p. 461.

    Article  CAS  Google Scholar 

  22. Gaikwad, V., Kennedy, E., Mackie, J., Holdsworth, C., Molloy, S., Kundu, S., and Dlugogorski, B., Plasma Process. Polym., 2013, vol. 10, no. 2, p. 141.

    Article  CAS  Google Scholar 

  23. Bodrikov, I., Titov, E.Y., Vasiliev, A., Titov, D., Ivanova, A., and Subbotin, A., Plasma Process. Polym., 2022, vol. 19, no. 8, p. 37.

    Article  Google Scholar 

  24. Titov, E.Yu., Titov, D.Yu., Bodrikov, I.V., Kut’in, A.M., Kurskii, Yu.A., and Gazizzulin, R.R., High Energy Chem., 2018, vol. 52, p. 512.

    Article  CAS  Google Scholar 

  25. Titov, E.Yu., Bodrikov, I.V., Serov, A.I., Kurskii, Yu.A., Titov, D.Yu., and Bodrikova, E.R., Energies, 2022, vol. 15, no. 9, p. 3400.

    Article  CAS  Google Scholar 

  26. Bodrikov, I.V., Titov, E.Yu., Subbotin, A.Y., Grinvald, I.I., Titov, D.Yu., and Razov, E.N., Plasma Process. Polym., 2020, vol. 17, no. 9, p. 1.

    Article  Google Scholar 

  27. Bodrikov, I.V., Kut’in, A.M., Titov, E.Yu., Titov, D.Yu., and Gazizullin, R.R., High Energy Chem., 2017, vol. 51, no. 1, p. 60.

    Article  CAS  Google Scholar 

  28. Bodrikov, I.V., Titov, E.Yu., Grinval’d, I.I., Titov, D.Yu., Kurskii, Yu.A., and Razov, E.N., High Energy Chem, 2020, vol. 54, no. 1, p. 72.

    Article  CAS  Google Scholar 

  29. Mulholland, J.A., Sarofim, A.F., Sosothikul, P., Monchamp, P.A., Plummer, E.F., and Lafleur, A.L., Combust. Flame, 1992, vol. 89, no. 1, p. 103.

    Article  CAS  Google Scholar 

  30. Tirey, D.A., Taylor, P.H., Kasner, J., and Dellinger, B., Combust. Sci. Technol., 1990, vol. 74, nos. 1–6, p. 137.

    Article  CAS  Google Scholar 

  31. Fazekas, P., Czégény, Z., Mink, J., Szabó, P.T., Keszler, A.M., Bódis, E., Klébert, S., Szépvölgyi, J., and Károly, Z., Plasma Chem. Plasma Process., 2018, vol. 38, no. 4, p. 771.

    Article  CAS  Google Scholar 

  32. Sutherland, I.W., Hamilton, N.G., Dudman, C.C., Jones, P., Lennon, D., and Winfield, J.M., Appl. Catal., A, 2011, vol. 399, nos. 1–2, p. 1.

  33. Sutherland, I.W., Hamilton, N.G., Dudman, C.C., Jones, P., Lennon, D., and Winfield, J.M., Appl. Catal., A, 2014, vol. 117, p. 4198.

  34. McIntosh, G.J. and Russell, D.K., J. Phys. Chem. A, 2013, vol. 117, no. 20, p. 4183.

    Article  CAS  PubMed  Google Scholar 

  35. McIntosh, G.J. and Russell, D.K., J. Phys. Chem. A, 2013, vol. 117, no. 20, p. 4198.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out with the use of the equipment of the Shared-Use Center “Analytical Center at the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences” and supported by a grant (Unique identifier, RF-2296.61321X0017; agreement no. 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Serov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodrikov, I.V., Titov, E.Y., Serov, A.I. et al. Influence of Voltage and Duration of Plasma Pyrolysis of 1,1,2,2-Tetrachloroethane in the Liquid Phase by the Action of Low-Voltage Discharges. High Energy Chem 57, 515–521 (2023). https://doi.org/10.1134/S0018143923060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923060036

Keywords:

Navigation