Skip to main content
Log in

Evaluation of the Applicability of External X-ray Radiation to Stimulate the Autoradiolysis Processes in Therapeutic Radiopharmaceuticals (Exemplified by [153Sm]Sm-PSMA-617 and [177Lu]Lu-PSMA-617)

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 17 May 2023

This article has been updated

Abstract

The paper presents the results of a study on the radiolytic degradation of vector molecules in radiopharmaceuticals, caused by ionizing radiation from the radionuclide used in the preparations, in comparison with the equal dose of external X-ray irradiation. The dose factors for therapeutic radionuclides samarium-153 and lutetium-177 in aqueous solutions were estimated in geometry simulating the finished dosage form of radiopharmaceuticals (standard injection vial ) both by computational methods (in silico) and applying chemical dosimetry. Irradiation with external X-ray source to doses formed in volume of therapeutic radiopharmaceuticals with given radioactivity concentration was performed on an LNK-268 X-ray unit. Using the [153Sm]Sm-PSMA-617 and [177Lu]Lu-PSMA-617 radiopharmaceuticals as an instance, we compared the degree of radiolytic degradation and the profiles of radiolytic impurities formed as a result of both external X-ray irradiation and autoradiolysis. Qualitative coincidence of the impurity profiles formed in both cases was noted. It has been shown that external X-ray radiation can be used to simulate the autoradiolysis processes of radiopharmaceuticals if additional corrections are made for the type of radiation and dose rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Change history

Notes

  1. In all experiments, the volumes of solutions were 1 mL (standard injection vial, r = 10 mm, h ≈ 3.2 mm).

REFERENCES

  1. Dolgin, E., Nat. Biotechnol., 2018, vol. 36, no. 12, p. 1125. https://doi.org/10.1038/nbt1218-1125

    Article  CAS  PubMed  Google Scholar 

  2. Hennrich, U. and Kopka, K., Pharmaceuticals, 2019, vol. 12, no. 3, p. 114. https://doi.org/10.3390/ph12030114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Novartis PluvictoTM approved by FDA as first targeted radioligand therapy for treatment of progressive, PSMA positive metastatic castration-resistant prostate cancer. www.novartis.com/news/media-releases/novartis-pluvictotm-approved-fda-first-targeted-radioligand-therapy-treatment-progressive-psma-positive-metastatic-castration-resistant-prostate-cancer. Accessed August 1, 2022.

  4. Baudhuin, H., Cousaert, J., Vanwolleghem, P., Raes, G., Caveliers, V., Keyaerts, M., Lahoutte, T., and Xavier, C., Pharmaceuticals, 2021, vol. 14, no. 5, p. 448. https://doi.org/10.3390/ph14050448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mu, L., Hesselmann, R., Oezdemir, U., Bertschi, L., Blanc, A., Dragic, M., Löffler, D., Smuda, C., Johayem, A., and Schibli, R., Appl. Radiat. Isot., 2013, vol. 76, p. 63. https://doi.org/10.1016/j.apradiso.2012.07.022

    Article  CAS  PubMed  Google Scholar 

  6. Martin, S., Tonnesmann, R., Hierlmeier, I., Maus, S., Rosar, F., Ruf, J., Holland, J.P., Ezziddin, S., and Bartholoma, M.D., J. Med. Chem., 2021, vol. 64, no. 8, p. 4960. https://doi.org/10.1021/acs.jmedchem.1c00045

    Article  CAS  PubMed  Google Scholar 

  7. Rothschild, W.G. and Allen, A.O., Radiat. Res., 1958, vol. 8, no. 2, p. 101. https://doi.org/10.2307/3570600

    Article  CAS  PubMed  Google Scholar 

  8. Hart, E.J. and Walsh, P.D., Radiat. Res., 1954, vol. 1, no. 4, p. 342.

    Article  CAS  PubMed  Google Scholar 

  9. Hart, E.J., Radiat. Res., 1955, vol. 2, no. 1, p. 33.

    Article  CAS  PubMed  Google Scholar 

  10. Bjergbakke, E. and Sehested, K., Radiation Chemistry, vol. 1: Aqueous Media, Biology, Dosimetry, Hart, E.J., Ed., Washigton, DC: American Chemical Society, 1968, p. 579. https://doi.org/10.1021/ba-1968-0081.ch040

  11. Sharpe, P.H.G., Barrett, J.H., and Berkley, A.M., Int. J. Appl. Radiat. Isot., 1985, vol. 36, no. 8, pp. 647. https://doi.org/10.1016/0020-708X(85)90006-7

    Article  CAS  Google Scholar 

  12. Sharpe, P.H.G. and Sehested, K., Radiat. Phys. Chem., 1989, vol. 34, no, 5, p. 763. https://doi.org/10.1016/1359-0197(89)90281-6

    Article  CAS  Google Scholar 

  13. Sharpe, P., Miller, A., and Bjergbakke, E., Radiat. Phys. Chem., 1990, vol. 35, nos. 4–6, p. 757. https://doi.org/10.1016/1359-0197(90)90311-5

    Article  CAS  Google Scholar 

  14. Wang, F., Li, Z., Feng, X., Yang, D., and Lin, M., Prostate Cancer Prostatic Dis., 2022, vol. 25, no. 1, p. 11. https://doi.org/10.1038/s41391-021-00394-5

    Article  CAS  PubMed  Google Scholar 

  15. Kopka, K., Benešová, M., Bařinka, C., Haberkorn, U., and Babich, J., J. Nucl. Med., 2017, vol. 58, Suppl. 2, p. 17S. https://doi.org/10.2967/jnumed.116.186775

    Article  CAS  PubMed  Google Scholar 

  16. Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., Beck, B.R., Bogdanov, A.G., Brandt, D., Brown, J.M.C., Burkhardt, H., Canal, P., Cano-Ott, D., Chauvie, S., Cho, K., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2016. vol. 835, p. 186. https://doi.org/10.1016/j.nima.2016.06.125

    Article  CAS  Google Scholar 

  17. Taschereau, R., Chow, P.L., Cho, J.S., and Chatziioannou, A.F., Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, vol. 569, no. 2, p. 2006. https://doi.org/10.1016/j.nima.2006.08.038

    Article  CAS  Google Scholar 

  18. Khusnulina, A., IOP Conf. Ser. Mater. Sci. Eng., 2014, vol. 66, no. 1, p. 012032. https://doi.org/10.1088/1757-899X/66/1/012032

  19. Stabin, M.G. and Konijnenberg, M.W., J. Nucl. Med., 2000, vol. 41, no. 1, p. 149.

    CAS  PubMed  Google Scholar 

  20. Radionuclide Decay Data. http://hps.org/publicinformation/radardecaydata.cfm. Accessed May 15, 2022.

  21. Andersson, M., Johansson, L., Eckerman, K., and Mattsson, S., EJNMMI Res., 2017, vol. 7, no. 1, p. 88. https://doi.org/10.1186/s13550-017-0339-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goorley, T., James, M., Booth, T., Brown, F., Bull, J., Cox, L.J., Durkee, J., Elson, J., Fensin, M., Forster, R.A., Hendricks, J., Hughes, H.G., Johns, R., Kiedrowski, B., Martz, R., Mashnik, S., McKinney, G., Pelowitz, D., Prael, R., et al., Nucl. Technol., 2012, vol. 180, no. 3, p. 298. https://doi.org/10.13182/NT11-135

    Article  CAS  Google Scholar 

  23. de Blois, E., Chan, H.S., de Zanger, R., Konijnenberg, M., and Breeman, W.A.P., Appl. Radiat. Isot., 2014, vol. 85, p. 28. https://doi.org/10.1016/j.apradiso.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  24. de Blois, E., Chan, H.S., Konijnenberg, M., de Zanger, R., and Breeman, W.A.P., Curr. Top. Med. Chem., 2012, vol. 12, no. 23, p. 2677. https://doi.org/10.2174/1568026611212230005

    Article  CAS  PubMed  Google Scholar 

  25. Ruigrok, E.A.M., Tamborino, G., de Blois, E., Roobol, S.J., Verkaik, N., De Saint-Hubert, M., Konijnenberg, M.W., van Weerden, W.M., de Jong, M., and Nonnekens, J., Eur. J. Nucl. Med. Mol. Imaging, 2022, vol. 49, no. 11, p. 3627. https://doi.org/10.1007/s00259-022-05821-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Traino, A.C., Marcatili, S., Avigo, C., Sollini, M., Erba, P.A., and Mariani, G., Med. Phys., 2013, vol. 40, no. 4, p. 042505. https://doi.org/10.1118/1.4794473

    Article  CAS  PubMed  Google Scholar 

  27. Product Monograph: Lutathera®. www.samnordic.se/wp-content/uploads/2018/05/LUTATHERA-MONOGRAPH-120218.pdf.

  28. Dosing&Administration I PLUVICTO. www.hcp.novartis.com/products/pluvicto/psma-positive-mcrpc/ dosing-and-administration. Accessed August 1, 2022.

  29. LNHB. Nuclear data—Laboratoire National Henri Becquerel. http://www.lnhb.fr/nuclear-data/nuclear-data-table. Accessed August 14, 2022.

  30. de Zanger, R.M.S., Chan, H.S., Breeman, W.A.P., and de Blois, E., J. Radioanal. Nucl. Chem., 2019, vol. 321, no. 1, p. 285. https://doi.org/10.1007/s10967-019-06573-y

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the state assignment of the Federal Medicobiological Agency of Russia, project no. 122031100121-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Larenkov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, Y.A., Bubenshchikov, V.B., Belousov, A.V. et al. Evaluation of the Applicability of External X-ray Radiation to Stimulate the Autoradiolysis Processes in Therapeutic Radiopharmaceuticals (Exemplified by [153Sm]Sm-PSMA-617 and [177Lu]Lu-PSMA-617). High Energy Chem 57, 18–27 (2023). https://doi.org/10.1134/S0018143923010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143923010095

Keywords:

Navigation