Skip to main content
Log in

Evaporation of Carbon Atoms and Molecules in Helium by Low-Current Arc Discharge with Graphite Electrodes

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In terms of the unified model of low-current arc discharge, which describes the processes occurring in the gas-discharge gap and in the electrodes, numerical calculations have been carried out to study the evaporation of carbon atoms and molecules from graphite electrodes into a nonequilibrium helium arc plasma. For different values of discharge current density, the distributions of atomic and molecular carbon and their ions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Iijima, S., Nature, 1991, vol. 354, p. 56. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. Baughman, R.H., Zakhidov, A.A., and Wa de Heer, W.A., Science, 2002, vol. 297, p. 787. https://doi.org/10.1126/science.1060928

    Article  CAS  Google Scholar 

  3. Journet, C., Maser, W., Bernier, P., et al., Nature, 1997, vol. 388, p. 756. https://doi.org/10.1038/41972

    Article  CAS  Google Scholar 

  4. Ng, J. and Raitses, Y., J. Appl. Phys., 2015, vol. 117, p. 063303. https://doi.org/10.1063/1.4906784

    Article  CAS  Google Scholar 

  5. Andrews, R., Jacques, D., Qian, D., and Rantell, T., Acc. Chem. Res., 2002, vol. 35, no. 12, p. 1008. https://doi.org/10.1021/ar010151m

    Article  CAS  Google Scholar 

  6. Antisari, M.V., Marazzi, R., and Krsmanovic, R., Carbon, 2003, vol. 41, p. 2393. https://doi.org/10.1016/S0008-6223(03)00297-5

    Article  CAS  Google Scholar 

  7. Timerkaev, B.A., Kaleeva, A.A., Timerkaeva, D.B., and Saifutdinov, A.I., High Energy Chem., 2019, vol. 53, no. 5, p. 390. https://doi.org/10.1134/S0018143919050138

    Article  Google Scholar 

  8. Kumar, A., Lin, P.A., Xue, A., Hao, B., Yap, Y.Kh., and Sankaran, R.M., Nat. Commun., 2013, vol. 4, p. 2618. https://doi.org/10.1038/ncomms3618

    Article  CAS  Google Scholar 

  9. Ostrikov, K. and Murphy, B., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 2223. https://doi.org/10.1088/0022-3727/40/8/S01

    Article  CAS  Google Scholar 

  10. Shavelkina, M.B., Ivanov, P.P., Amirov, R.K., et al., High. Energy Chem., 2021, vol. 55, p. 531. https://doi.org/10.1134/S001814392106014X

    Article  CAS  Google Scholar 

  11. Shavelkina, M.B., Ivanov, P.P., Amirov, R.K., et al., Plasma Phys. Rep., 2021, vol. 47, p. 1014. https://doi.org/10.1134/S1063780X21100093

    Article  Google Scholar 

  12. Shavelkina, M.B., Ivanov, P.P., Bocharov, A.N., et al., Plasma Chem. Plasma Process., 2021, vol. 41, p. 171. https://doi.org/10.1007/s11090-020-10133-8

    Article  CAS  Google Scholar 

  13. Lebedev, Y.A., Averin, K.A., Borisov, R.S., et al., High Energy Chem., 2018, vol. 52, p. 324. https://doi.org/10.1134/S0018143918040100

    Article  CAS  Google Scholar 

  14. Lebedev, Y.A., Tatarinov, A.V., and Epstein, I.L., Plasma Chem. Plasma Process., 2019, vol. 39, p. 787.

    Article  CAS  Google Scholar 

  15. Lebedev, Y.A., Polymers, 2021, vol. 13, no. 11, p. 1678. https://doi.org/10.3390/polym13111678

    Article  CAS  Google Scholar 

  16. Saifutdinov, A.I., Fairushin, I.I., and Kashapov, N.F., JETP Lett., 2016, vol. 104, p. 180. https://doi.org/10.1134/S0021364016150145

    Article  CAS  Google Scholar 

  17. Baeva, M., Boretskij, V.F., Gonzalez, D., et al., J. Phys. D: Appl. Phys., 2021, vol. 54, no. 2, p. 025203. https://doi.org/10.1088/1361-6463/abba5d

    Article  CAS  Google Scholar 

  18. Saifutdinov, A.I., Timerkaev, B.A., and Saifutdinova, A.A., JETP Lett., 2020, vol. 112, no. 7, p. 405. https://doi.org/10.1134/S0021364020190091

    Article  CAS  Google Scholar 

  19. Saifutdinov, A.I., J. Appl. Phys., 2021, vol. 129, no. 9, p. 093302. https://doi.org/10.1063/5.0033372

    Article  CAS  Google Scholar 

  20. Wang, W., Rong, M., Murphy, A.B., Wu, Y., Spencer, J.W., Yan, J.D., and Fang, M.T.C., J. Phys. D: Appl. Phys., 2011, vol. 44, no. 35, p. 355207. https://doi.org/10.1088/0022-3727/44/35/355207

    Article  CAS  Google Scholar 

  21. Kutasi, K., Hartmann, P., and Donko, Z., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 3368. https://doi.org/10.1088/0022-3727/34/23/308

    Article  CAS  Google Scholar 

  22. Sasaki, S., Ohkouchi, Y., Takamura, S., and Kato, T., J. Phys. Soc. Jpn., 1994, vol. 63, p. 2942.

    Article  CAS  Google Scholar 

  23. Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team, NIST Atomic Spectra Database, Gaithersburg, MD: National Institute of Standards and Technology, 2018.

  24. Weltner, W., Jr. and Van Zee, R.J., Chem. Rev., 1989, vol. 89, no. 8, p. 1713. https://doi.org/10.1021/cr00098a005

    Article  CAS  Google Scholar 

  25. Fantz, U. and Meir, S., J. Nucl. Mater., 2005, vol. 337, p. 1087.

    Article  Google Scholar 

  26. Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure. IV: Constants of Diatomic Molecules, New York: Van Nostrand Reinhold, 1979.

    Book  Google Scholar 

  27. Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, Monograph No. 3, J. Phys. Chem. Ref. Data, 1994.

  28. Halmova, G., Gorfinkiel, J.D., and Tennyson, J., J. Phys. B: At. Opt. Phys., 2006, vol. 39, no. 12, p. 2849.

    Article  CAS  Google Scholar 

  29. Munjal, H. and Baluja, K.L., J. Phys. B: At. Opt. Phys., 2006, vol. 39, p. 3185. https://doi.org/10.1016/j.adt.2006.01.001

    Article  CAS  Google Scholar 

  30. Curtis, L., Engman, B., and Erman, P., Phys. Scr., 1976, vol. 13, p. 270. https://doi.org/10.1088/0953-4075/39/12/018

    Article  CAS  Google Scholar 

  31. Deutsch, H., Becker, K., and Märk, T.D., Eur. Phys. J. D, 2000, vol. 12, p. 283. https://doi.org/10.1007/s100530070023

    Article  CAS  Google Scholar 

  32. Vriens, L. and Smeets, A.H.M., Phys. Rev. A, 1980, vol. 22, p. 940. https://doi.org/10.1103/PhysRevA.22.940

    Article  CAS  Google Scholar 

  33. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009, 3rd ed.

  34. Mul, P. and McGowan, J., Astrophys. J., 1980, vol. 237, p. 749.

    Article  CAS  Google Scholar 

  35. Blottner, F.G., in NASA SP-252: The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, Washington, DC: National Aeronautics and Space Administration, 1970, vol. 1, p. 219.

    Google Scholar 

  36. Diaz-Tendero, S., Sanchez, G., Hervieux, P.A., Alcami, M., and Martin, F., Braz. J. Phys., 2006, vol. 36, p. 529. https://doi.org/10.1590/S0103-97332006000400009

    Article  CAS  Google Scholar 

  37. Langmuir, I., Phys. Rev., 1913, vol. 2, p. 329. https://doi.org/10.1103/PhysRev.2.329

    Article  Google Scholar 

  38. Thorn, R.J. and Winslow, G.H., J. Chem. Phys., 1957, vol. 26, p. 186.

    Article  CAS  Google Scholar 

  39. Mansour, A.R. and Hara, K., J. Phys. D: Appl. Phys., 2019, vol. 52, p. 105204. https://doi.org/10.1088/1361-6463/aaf945

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation and the Cabinet of Ministers of the Republic of Tatarstan, project no. 22-22-20099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Saifutdinov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saifutdinov, A.I., Sorokina, A.R., Boldysheva, V.K. et al. Evaporation of Carbon Atoms and Molecules in Helium by Low-Current Arc Discharge with Graphite Electrodes. High Energy Chem 56, 477–486 (2022). https://doi.org/10.1134/S0018143922060170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922060170

Keywords:

Navigation