Skip to main content
Log in

Conformational Changes in Polyampholyte Macrochains on the Surface of an Oblate Metallic Nanospheroid in Alternating Electric Field

  • GENERAL ASPECTS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Conformational changes in polyampholyte polypeptides adsorbed on the surface of an oblate metal nanospheroid with a periodic change in time of its polarity along the axis of rotation have been studied using the molecular dynamics method. The radial distributions of polypeptide atoms, as well as the distributions of the linear density of polypeptide atoms along the nanospheroid rotation axis, are constructed. The obtained conformational structures of polyampholytes were compared in the presence and in the absence of sodium and chlorine ions in water. At low temperatures, the formation of a narrow macromolecular ring around the nanospheroid near the equator was observed; the ring swelled with an increase in the amplitude of an external alternating electric field; and polyampholyte desorption occurred with a further increase in the amplitude. At high temperatures, periodic changes in the conformational structure of adsorbed polyampholytic polypeptides were observed on the surface of the oblate metal nanospheroid with the frequency of an external polarizing alternating field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Fuller, M.A. and Koper, I., Nano Converg., 2019, vol. 6, p. 11.

    Article  Google Scholar 

  2. Szekeres, G.P., Montes-Bayon, M., Bettmer, J., and Kneipp, J., Anal. Chem., 2020, vol. 92, p. 8553.

    Article  CAS  Google Scholar 

  3. Khlebtsov, B.N., Khanadeev, V.A., Burov, A.M., Le Ru, E.C., and Khlebtsov, N.G., J. Phys. Chem. C, 2020, vol. 124, p. 10647.

    Article  CAS  Google Scholar 

  4. Xu, X., Liu, Y., Yang, Y., Wu, J., Cao, M., and Sun, L., Colloids Surf., A, 2022, vol. 640, p. 128491.

    Article  CAS  Google Scholar 

  5. Farcas, A., Janosi, L., and Astilean, S., Comput. Theor. Chem., 2022, vol. 1209, p. 113581.

    Article  CAS  Google Scholar 

  6. Guo, Q., Ding, L., Li, Y., Xiong, S., Fang, H., Li, X., Nie, L., Xiong, Y., and Huang, X., Sens. Actuators, B, 2022, vol. 364, p. 131872.

    Article  CAS  Google Scholar 

  7. Ma, F., Wang, Q., Xu, Q., and Zhang, C., Anal. Chem., 2021, vol. 93, p. 15124.

    Article  CAS  Google Scholar 

  8. Wu, Y., Wang, X., Wen, X., Zhu, J., Bai, X., Jia, T., Yang, H., Zhang, L., and Qi, Y., Phys. Lett. A, 2020, vol. 384, p. 126544.

    Article  CAS  Google Scholar 

  9. Mazzotta, F., Johnson, T.W., Dahlin, A.B., Shaver, J., Oh, S., and Höök, F., ACS Photonics, 2015, vol. 2, p. 256.

    Article  CAS  Google Scholar 

  10. Klimov, V.V., Ducloy, M., and Letokhov, V.S., Chem. Phys. Lett., 2002, vol. 358, p. 192.

    Article  CAS  Google Scholar 

  11. Liaw, J., Wu, H., Huang, C., and Kuo, M., Nanoscale Res. Lett., 2016, vol. 11, no. 26.

  12. Chandra, S., Doran, J., and McCormack, S.J., J. Colloid Interface Sci., 2015, vol. 459, p. 218.

    Article  CAS  Google Scholar 

  13. Piralaee, M., Asgari, A., and Siahpoush, V., Optik, 2018, vol. 172, p. 1064.

    Article  CAS  Google Scholar 

  14. Chen, Y., Cruz-Chu, E.R., Woodard, J., Gartia, M.R., Schulten, K., and Liu, L., ACS Nano, 2012, vol. 6, p. 8847.

    Article  CAS  Google Scholar 

  15. Radhakrishnan, K. and Singh, S.P., Macromolecules, 2021, vol. 54, p. 7998.

    Article  CAS  Google Scholar 

  16. Netz, R.R., J. Phys. Chem. B, 2003, vol. 107, p. 8208.

    Article  CAS  Google Scholar 

  17. Mahinthichaichan, P., Tsai, C., Payne, G.F., and Shen, J., ACS Omega, 2020, vol. 5, p. 12016.

    Article  CAS  Google Scholar 

  18. Qi, S., Lin, M., Qi, P., Shi, J., Song, G., Fan, W., Sui, K., and Gao, C., Chem. Eng. J., 2022, vol. 444, p. 136541.

    Article  CAS  Google Scholar 

  19. Kruchinin, N.Yu. and Kucherenko, M.G., Biophysics, 2020, vol. 65, no. 2, p. 186.

    Article  CAS  Google Scholar 

  20. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2021, vol. 83, no. 1, p. 79.

    Article  CAS  Google Scholar 

  21. Kruchinin, N.Yu., Kucherenko, M.G., and Neyasov, P.P., Russ. J. Phys. Chem. A, 2021, vol. 95, no. 2, p. 362.

    Article  CAS  Google Scholar 

  22. Kruchinin, N.Yu. and Kucherenko, M.G., Surf. Interfaces, 2021, vol. 27, p. 101517.

    Article  CAS  Google Scholar 

  23. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2021, vol. 83, no. 5, p. 591.

    Article  CAS  Google Scholar 

  24. Kruchinin, N.Yu. and Kucherenko, M.G., Russ. J. Phys. Chem. A, 2022, vol. 96, no. 3, p. 622.

    Google Scholar 

  25. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2020, vol. 82, no. 4, p. 392.

    Article  CAS  Google Scholar 

  26. Kruchinin, N.Yu. and Kucherenko, M.G., Eurasian Phys. Tech. J., 2021, vol. 18, no. 1, p. 16.

    Article  Google Scholar 

  27. Kruchinin, N.Yu., Colloid J., 2021, vol. 83, no. 3, p. 326.

    Article  CAS  Google Scholar 

  28. Kruchinin, N.Yu. and Kucherenko, M.G., High Energy Chem., 2021, vol. 55, no. 6, p. 442.

    Article  CAS  Google Scholar 

  29. Grosberg A.Yu. and Khokhlov, A.P., Statisticheskaya fizika makromolekul (Statistical Physics of Macromolecules), Moscow: Nauka, 1989.

  30. Landau, L.D. and Lifshits, E.M., Course of Theoretical Physics, vol. 8: Electrodynamics of Continuous Media, Amsterdam: Elsevier, 1984, 2nd ed.

    Google Scholar 

  31. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2022, vol. 84, no. 2, p. 169.

    Article  CAS  Google Scholar 

  32. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comput. Chem., 2005, vol. 26, p. 1781.

    Article  CAS  Google Scholar 

  33. Kerell, A.D., Jr., MacBashford, D., Bellott, M., Dunbrack, R.L., Jr., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher W.E., III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M., J. Phys. Chem. B, 1998, vol. 102, p. 3586.

    Article  Google Scholar 

  34. Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., and Mackerell, A.D., Jr., Nat. Methods, 2016, vol. 14, p. 71.

    Article  Google Scholar 

  35. Heinz, H., Vaia, R.A., Farmer, B.L., and Naik, R.R., J. Phys. Chem. C, 2008, vol. 112, p. 17281.

    Article  CAS  Google Scholar 

  36. Walsh, T.R., Acc. Chem. Res., 2017, vol. 50, p. 1617.

    Article  CAS  Google Scholar 

  37. Bellucci, L. and Corni, S., J. Phys. Chem. C, 2014, vol. 118, p. 11357.

    Article  CAS  Google Scholar 

  38. Cannon, D.A., Ashkenasy, N., and Tuttle, T., J. Phys. Chem. Lett., 2015, vol. 6, p. 3944.

    Article  CAS  Google Scholar 

  39. Darden, T., York, D., and Pedersen, L., J. Chem. Phys., 1993, vol. 98, p. 10089.

    Article  CAS  Google Scholar 

  40. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., J. Chem. Phys., 1983, vol. 79, p. 926.

    Article  CAS  Google Scholar 

  41. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graph., 1996, vol. 14, p. 33.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kruchinin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinin, N.Y., Kucherenko, M.G. Conformational Changes in Polyampholyte Macrochains on the Surface of an Oblate Metallic Nanospheroid in Alternating Electric Field. High Energy Chem 56, 499–510 (2022). https://doi.org/10.1134/S0018143922060108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922060108

Keywords:

Navigation