Skip to main content
Log in

Photoreduction and Photoinitiating Ability of 1-Hexadecyl Isatin Derivatives Containing Chemically Different Substituents in the 5-Position

  • PHOTOCHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

New 1-hexadecyl derivatives of isatin containing substituents of various natures in the 5-position have been synthesized and characterized. The kinetics of their photoreduction by visible radiation in the presence of 4-methyl-N,N-dimethylaniline and triethylamine has been studied. It has been found that the photoreduction rate constant increases in the following order of substituted isatins: CH3 < H < Cl < Br. It is shown that the isatin–amine system initiates photopolymerization of oligocarbonate dimethacrylate OKM-2 by visible light. The efficiency of photoinitiation correlates with the activity of isatins in the photoreduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Garra, P., Fuassier, J.P., Lakhdar, S., Yagci, Y., and Lalevee, J., Prog. Polym. Sci., 2020, vol. 107, p. 101277.

    Article  CAS  Google Scholar 

  2. Pigot, C., Noirbent, G., Brunel, D., and Dumur, F., Eur. Polym. J., 2020, vol. 133, p. 109797.

    Article  CAS  Google Scholar 

  3. Len’shina, N.A., Shurygina, M.P., and Chesnokov, S.A., Polym. Sci., Ser. B, 2021, vol. 63, no. 6, p. 657.

    Article  Google Scholar 

  4. Chesnokov, S.A., Shurygina, M.P., and Abakumov, G.A., High Energy Chem., 2011, vol. 45, no. 4, p. 287.

    Article  Google Scholar 

  5. Chesnokov, S.A., Eur. Polym. J., 2022, vol. 162, p. 110917.

    Article  Google Scholar 

  6. Zhiganshina, E.R., Lysenkov, V.S., Lopatina, T.I., Arsenyev, M.V., and Chesnokov, S.A., High Energy Chem., 2022, vol. 56, no. 3, p. 163.

    Article  CAS  Google Scholar 

  7. Pandeya, S.N., Smitha, S., Jyoti, M., and Sridhar, S.K., Acta Pharm., 2005, vol. 55, no. 1, p. 27.

    CAS  PubMed  Google Scholar 

  8. Pakravan, P., Kashanian, S., Khodaei, M.M., and Harding, F.J., Pharm. Rep., 2013, vol. 65, no. 2, p. 313.

    Article  CAS  Google Scholar 

  9. Kakkar, R., MedChemComm, 2019, vol. 10, no. 3, p. 351.

    Article  Google Scholar 

  10. Nath, R., Pathania, S., Grover, G., and Akhtar, M.J., J. Mol. Struct., 2020, vol. 1222, p. 128900.

    Article  CAS  Google Scholar 

  11. Yang, W., Sun, M., Wang, Y., Yan, H., Zhang, G., and Zhang, Q., Polym. Chem., 2021, vol. 12, no. 15, p. 2317.

    Article  Google Scholar 

  12. Kasi, B., Kaliaperumal, N., and Murugesan, V., J. Mol. Struct., 2021, vol. 1242, p. 130714.

    Article  CAS  Google Scholar 

  13. Zhang, S., Zhu, X., and Jin, C., J. Mater. Chem. A, 2019, vol. 7, no. 12, p. 6883.

    Article  CAS  Google Scholar 

  14. Som, P.K. and Banerjee, A.N., Eur. Polym. J., 1993, vol. 29, no. 6, p. 889.

    Article  Google Scholar 

  15. Haucke, G., Seidel, B., and Graness, A., J. Photochem., 1987, vol. 37, no. 1, p. 139.

    Article  CAS  Google Scholar 

  16. Silva, M.T. and Netto-Ferreira, J.C., J. Photochem. Photobiol., A, 2004, vol. 162, nos. 2–3, p. 225.

    Article  CAS  Google Scholar 

  17. Bogdanov, A.V., Pashirova, T.N., Musin, L.I., Krivolapov, D.B., Zakharova, L.Y., Mironov, V.F., and Konovalov, A.I., Chem. Phys. Lett., 2014, vol. 594, p. 69.

    Article  CAS  Google Scholar 

  18. Gordon, A.J. and Ford, R.A., The Chemist’s Companion, New York: Wiley–Interscience, 1972.

    Google Scholar 

  19. Berlin, A.A., Kefeli, T.Ya., and Korolev, G.V., Poliefirakrilaty (Polyether Acrylates), Moscow: Nauka, 1967.

    Google Scholar 

  20. Boddapati, A., Rahane, S.B., Slopek, R.P., Breedveld, V., Henderson, C.L., and Grover, M.A., Polymer, 2011, vol. 52, no. 3, p. 866.

    Article  CAS  Google Scholar 

  21. Sandmeyer, T., Helv. Chim. Acta, 1919, vol. 2, p. 234.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-73-00283. The work was performed using the equipment of the Shared-Use Center “Analytical Center of the Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences” with the support of the grant “Ensuring the development of the material and technical infrastructure of centers for the shared use of scientific equipment” (project unique identifier RF-2296.61321X0017, agreement no. 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Len’shina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Len’shina, N.A., Arsenyev, M.V., Fagin, A.A. et al. Photoreduction and Photoinitiating Ability of 1-Hexadecyl Isatin Derivatives Containing Chemically Different Substituents in the 5-Position. High Energy Chem 56, 315–319 (2022). https://doi.org/10.1134/S0018143922050095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143922050095

Keywords:

Navigation