Skip to main content
Log in

Effects of Imidazole and Its Derivatives on Radiation-Induced Dephosphorylation of Glycero-1-Phosphate in Deaerated Aqueous Solutions

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The effect of imidazole, histamine, histidine, and their nitro derivatives on the radiation-induced transformations of glycero-1-phosphate and ethanol in deaerated aqueous solutions at pH 7 has been studied It has been found that the test substances in equimolar concentrations to glycero-1-phosphate inhibit the radiation-induced dephosphorylation by scavenging the radical products of water radiolysis. At an additive-to-substrate ratio of 1 : 100, the nitro derivatives of histidine and metronidazole efficiently inhibit the radiation-induced dephosphorylation of glycero-1-phosphate due to the interaction with its carbon-centered radicals with constants of (3.1–5.1) × 109 L mol–1 s–1. Using the radiolysis of a 1 M aqueous solution of ethanol, it was demonstrated that 5-nitroimidazoles quantitatively oxidize α-hydroxyethyl radicals; this manifested itself in the absence of 2,3-butanediol among the radiolysis products and a ~20-fold increase in the yield of acetaldehyde, as compared to that in a control experiment. Thus, metronidazole and the nitro derivatives of histidine are capable of suppressing the radiation-induced dephosphorylation of glycero-1-phosphate and, probably, glycerophospholipids due to the oxidation of their α-hydroxylcontaining carbon-centered radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Overgaard, J., J. Clin. Oncol., 2007, vol. 25, no. 26, p. 4066.

    Article  Google Scholar 

  2. Urtasun, R.C., Chapman, J.D., Feldstein, M.L., Band, R.P., Rabin, H.R., Wilson, A.F., Marynowski, B., Starreveld, E., and Shnitka, T., Br. J. Cancer, Suppl., 1978, vol. 3, p. 271.

    CAS  Google Scholar 

  3. Kapoor, K., Chandra, M., Nag, D., Paliwal, J.K., Gupta, R.C., and Saxena, R.C., Int. J. Clin. Pharmacol. Res., 1999, vol. 19, no. 3, p. 83.

    CAS  PubMed  Google Scholar 

  4. Cooperman, J.M. and Lopez, R., Exp. Biol. Med., 2002, vol. 227, no. 11, p. 998.

    Article  CAS  Google Scholar 

  5. Wade, A.M. and Tucker, H.N., J. Nutr. Biochem., 1998, vol. 9, no. 6, p. 308.

    Article  CAS  Google Scholar 

  6. Millward, D.J., J. Nutr., 1997, vol. 127, no. 9, p. 1842.

    Article  CAS  Google Scholar 

  7. Yurkova, I.L., Kisel, M.A., Arnhold, J., and Shadyro, O.I., High Energy Chem., 2006, vol. 40, no. 5, p. 300.

    Article  CAS  Google Scholar 

  8. Yurkova, I.L., Russ. Chem. Rev., 2012, vol. 81, no. 2, p. 175.

    Article  CAS  Google Scholar 

  9. Wang, X., Devaiah, S.P., Zhang, W., and Welti, R., Prog. Lipid Res., 2006, vol. 45, no. 3, p. 250.

    Article  CAS  Google Scholar 

  10. Brinkevich, S.D. and Shadyro, O.I., High Energy Chem., 2009, vol. 43, no. 6, p. 435.

    Article  CAS  Google Scholar 

  11. Jore, D., Champion, B., Kaouadji, N., Jay-Gerin, J.P., and Ferradini, C., Int. J. Radiat. Appl. Instrum., Part C: Radiat. Phys. Chem., 1988, vol. 32, no. 3, p. 443.

    CAS  Google Scholar 

  12. Brinkevich, S.D., Sverdlov, R.L., Lagutin, P.Yu., and Shadyro, O.I., High Energy Chem., 2011, vol. 45, no. 5, p. 380.

    Article  CAS  Google Scholar 

  13. Brinkevich, S.D., Tugai, O.V., Sladkova, A.A., and Shadyro, O.I., High Energy Chem., 2020, vol. 54, no. 6, p. 455.

    Article  Google Scholar 

  14. Brinkevich, S.D., Maliborskii, A.Ya., Kapusto, I.A., Sverdlov, R.L., Grigor’ev, Yu.V., Ivashkevich, O.A., and Shadyro, O.I., High Energy Chem., 2019, vol. 53, no. 2, p. 147.

    Article  CAS  Google Scholar 

  15. Sverdlov, R.L., Brinkevich, S.D., and Shadyro, O.I., Free Radical Res., 2014, vol. 48, no. 10, p. 1200.

    Article  CAS  Google Scholar 

  16. Sverdlov, R.L., Brinkevich, S.D., and Shadyro, O.I., Radiat. Phys. Chem., 2014, vol. 98, p. 77.

    Article  CAS  Google Scholar 

  17. Brinkevich, S.D., Kuzmuk, D.A., Sverdlov, R.L., and Shadyro, O.I., High Energy Chem., 2019, vol. 53, no. 6, p. 472.

    Article  CAS  Google Scholar 

  18. Muller, S.N., Batra, R., Senn, M., Giese, B., Kisel, M.A., and Shadyro, O.I., J. Am. Chem. Soc., 1997, vol. 119, no. 12, p. 2795.

    Article  Google Scholar 

  19. Jagannadham, V. and Steenken, S., J. Am. Chem. Soc., 1988, vol. 110, no. 7, p. 2188.

    Article  CAS  Google Scholar 

  20. Brinkevich, S.D., Maliborskii, A.Ya., Kapusto, I.A., Sverdlov, R.L., Grigor’ev, Yu.V., and Shadyro, O.I., High Energy Chem., 2021, vol. 55, no. 1, p. 59.

    Article  CAS  Google Scholar 

  21. Ross, A.B., Mallard, W.G., Helman, W.P., Buxton, G.V., and Huie, R.E., Neta. P. NDRL–NIST Solution Kinetics Database: Version 3.0, Gaithersburg, MD: National Institute of Standards and Technology, 1998.

    Google Scholar 

Download references

Funding

This work was supported in part by the Belarusian Republican Foundation for Basic Research and the Ministry of Education of the Republic of Belarus, joint grant no. Kh20МV-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Shadyro.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brinkevich, S.D., Maliborskii, A.Y., Melnichuk, M.E. et al. Effects of Imidazole and Its Derivatives on Radiation-Induced Dephosphorylation of Glycero-1-Phosphate in Deaerated Aqueous Solutions. High Energy Chem 55, 155–164 (2021). https://doi.org/10.1134/S0018143921020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921020053

Keywords:

Navigation