Skip to main content
Log in

Plasmonic Antennas Based on Silica Shell-Coated Gold Nanorods for Near-IR Photodetectors

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

This paper presents the results on the colloidal synthesis of plasmonic antennas based on gold nanorods about 65 nm in length and 10 nm in diameter and on the growth of SiO2 shells of about a 15 nm thickness on the rods. The resulting nanorods have plasmon absorption in the range of 1–1.8 µm and, upon dispersion, form fairly stable colloidal solutions that persist for at least 10 h in various solvents, including water, ethanol, chloroform, tetrachloroethylene, and n-hexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Govorov, A.O., Lee, J., and Kotov, N.A., Phys. Rev. B, 2007, vol. 76, p. 125308.

    Article  Google Scholar 

  2. Yifat, Y., Ackerman, M., and Guyot-Sionnest, P., Appl. Phys. Lett., 2017, vol. 110, p. 041106.

    Article  Google Scholar 

  3. Shimizu, K.T., Woo, W.K., Fisher, B.R., Eisler, H.J., and Bawendi, M.G., Phys. Rev. Lett., 2002, vol. 89, p. 117401.

    Article  CAS  Google Scholar 

  4. West, R.G. and Sadeghi, S.M., J. Phys. Chem. C, 2012, vol. 116, p. 20496.

    Article  CAS  Google Scholar 

  5. Wang, C.H., Chen, C.W., Chen, Y.T., Wei, C.M., Chen, Y.F., Lai, C.W., Ho, M.L., Chou, P.T., and Hofmann, M., Appl. Phys. Lett., 2010, vol. 96, p. 071906.

    Article  Google Scholar 

  6. Komarala, V.K., Rakovich, Y.P., Bradley, A.L., Byrne, S.J., Gun’ko, Y.K., Gaponik, N., and Eychmuller, A., Appl. Phys. Lett., 2006, vol. 89, p. 253118.

    Article  Google Scholar 

  7. Schneider, G., Decher, G., Nerambourg, N., Praho, R., Werts, M.H.V., and Blanchard-Desce, M., Nano Lett., 2006, vol. 6, p. 530.

    Article  CAS  Google Scholar 

  8. Jin, L.-H., Li, S.-M., Kwon, B.-J., and Choa, Y.-H., J. Appl. Phys., 2011, vol. 109, p. 124310.

    Article  Google Scholar 

  9. Chan, Y.-H., Chen, J., Wark, S.E., Skiles, S.L., Son, D.H., and Batteas, J.D., ACS Nano, 2009, vol. 3, no. 7, p. 1735.

    Article  CAS  Google Scholar 

  10. Su, X.R., Zhang, W., Zhou, L., Peng, X.N., and Wang, Q.Q., Opt. Express, 2010, vol. 18, p. 6516.

    Article  CAS  Google Scholar 

  11. Jung, D.-R., Kim, J., Nam, S., Nahm, C., Choi, H., Kim, J.I., Lee, J., Kim, C., and Park, B., Appl. Phys. Lett., 2011, vol. 99, p. 041906.

    Article  Google Scholar 

  12. Rodrıguez-Fernandez, J., Pastoriza-Santos, I., and Perez-Juste, J., Garcıa de Abajo, F.J., and Liz-Marzan, L.M., J. Phys. Chem. C, 2007, vol. 111, p. 13361.

    Article  Google Scholar 

  13. Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U., and Artemyev, M., Nano Lett., 2002, vol. 2, p. 1449.

    Article  CAS  Google Scholar 

  14. Abadeer, N.S., Brennan, M.R., Wilson, W.L., and Murphy, C.J., ACS Nano, 2014, vol. 8, no. 2014, p. 8392.

  15. Nikoobakht, B. and El-Sayed, M.A., Chem. Mater., 2003, vol. 15, p. 1957.

    Article  CAS  Google Scholar 

  16. Spirin, M.G., Brichkin, S.B., Yushkov, E.S., and Razumov, V.F., High Energy Chem., 2020, vol. 54, no. 5, p. 308.

    Article  CAS  Google Scholar 

  17. Ozdil, Z.C.C., Spalla, O., Menguy, N., and Testard, F., J. Phys. Chem. C, 2019, vol. 123, p. 25320.

    Article  Google Scholar 

  18. Orendorff, C.J. and Murphy, C.J., J. Phys. Chem. B, 2006 vol. 110, p. 3990.

    Article  CAS  Google Scholar 

  19. Sreeprasad, T.S., Samal, A.K., and Pradeep, T., Langmuir, 2008, vol. 24, p. 4589.

    Article  CAS  Google Scholar 

  20. Gorelikov, I. and Matsuura, N., Nano Lett., 2008, vol. 8, p. 369.

    Article  CAS  Google Scholar 

  21. Sendroiu, I.E., Warner, M.E., and Corn, R.M., Langmuir, 2009, vol. 25, p. 11282.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 13.1902.21.0006, and carried out within the framework of state assignment AAAA-A19-119070790003-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Brichkin.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brichkin, S.B., Spirin, M.G., Gadomskaya, A.V. et al. Plasmonic Antennas Based on Silica Shell-Coated Gold Nanorods for Near-IR Photodetectors. High Energy Chem 55, 134–139 (2021). https://doi.org/10.1134/S0018143921020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143921020041

Keywords:

Navigation