Skip to main content
Log in

How Intramolecular Vibrational Energy Transport Changes with Rigidity and Polarity of the Environment?

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Vibrational energy transport through oligomeric polyethylene glycol (PEG) chains can occur ballistically via optical vibrational chain bands, showing fast and constant transport speed and high efficiency of the transport, thus offering means to transfer significant quanta of energy, exceeding 1000 cm–1, to large distances exceeding 60 Å. We report how the intramolecular energy transport time, through-chain transport speed, and end-group cooling rate depend on the rigidity and polarity of the environment. The experiments were performed with end-group labeled PEG oligomers using two-dimensional infrared (2DIR) spectroscopy. The ballistic energy transport was initiated at one end of the chain by exciting an azido moiety at ca. 2100 cm–1 and recorded at another end of the chain by probing the carbonyl stretching mode of succinimide ester. We found that the rigidity of the environment, polystyrene (PS) matrix vs. a solution of similar polarity, did not change the energy transport times much, nor the through-chain transport speed. These results suggest that in mildly polar media, dynamic fluctuations, occurring in solution but largely frozen in a solid matrix, are not the dominant cause of the dephasing of the chain states, despite the presence of fast relaxation components in the solution. The similarity of the transport times in different media suggests that the secondary chain structure does not affect much the transport in PEG chains. The solvent polarity affected the intramolecular transport significantly: the transport efficiency in polar DMSO is ca. 1.6 fold smaller than that in nonpolar CCl4 or PS. The cooling time of the succinimide ester end group is reduced in more polar solvents affecting the waiting time dependence shape and thus the energy arrival time to the reporter. The analysis of different ways of extracting the energy arrival time from the data is presented. The observed dependences of the through-chain transport time on the solvent polarity suggests the presence of multiple wavepackets propagating in the PEG chain with different group velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Fermi, E., Pasta, J., and Ulam, S., Studies of the Nonlinear Problems: Los Alamos Report, 1955.

  2. Logan, D.E. and Wolynes, P.G., J. Chem. Phys., 1990, vol. 93, p. 4994.

    Article  CAS  Google Scholar 

  3. Davydov, A.S., J. Theor. Biol., 1977, vol. 66, p. 379.

    Article  Google Scholar 

  4. Backus, E.H.G., Nguyen, P.H., Botan, V., Pfister, R., Moretto, A., Crisma, M., Toniolo, C., Stock, G., and Hamm, P., J. Phys. Chem., 2008, vol. 112, p. 9091.

    Article  CAS  Google Scholar 

  5. Schwarzer, D., Hanisch, C., Kutne, P., and Troe, J., J. Phys. Chem. A, 2002, vol. 106, no. 35, p. 8019.

    Article  CAS  Google Scholar 

  6. Schwarzer, D., Kutne, P., Schroeder, C., and Troe, J., J. Chem. Phys, vol. 121, no. 4, p. 1754.

  7. Wang, Z., Carter, J.A., Lagutchev, A., Koh, Y.K., Seong, N.-H., Cahill, D.G., and Dlott, D.D., Science, 2007, vol. 317, p. 787.

    Article  CAS  Google Scholar 

  8. Hamm, P., Lim, M., and Hochstrasser, R.M., J. Phys. Chem. B, 1998, vol. 102, no. 31, p. 6123.

    Article  CAS  Google Scholar 

  9. Asplund, M.C., Zanni, M.T., and Hochstrasser, R.M., Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 15, p. 8219.

    Article  CAS  Google Scholar 

  10. Rubtsova, N.I. and Rubtsov, I.V., Annu. Rev. Phys. Chem., 2015, vol. 66, p. 717.

    Article  CAS  Google Scholar 

  11. Schmitz, A.J., Pandey, H.D., Chalyavi, F., Shi, T., Fenlon, E.E., Brewer, S.H., Leitner, D.M., and Tucker, M.J., J. Phys. Chem. A, 2019, vol. 123, no. 49, p. 10571.

    Article  CAS  Google Scholar 

  12. Müller-Werkmeister, H.M., Li, Y.-L., Lerch, E.-B.W., Bigourd, D., and Bredenbeck, J., Angew. Chem. Int., Ed. Engl., 2013, vol. 52, no. 214, p. 6214.

  13. Schade, M., Moretto, A., Crisma, M., Toniolo, C., and Hamm, P., J. Phys. Chem. B, 2009, vol. 113, no. 40, p. 13393.

    Article  CAS  Google Scholar 

  14. Rubtsov, I.V., Wang, J., and Hochstrasser, R.M., Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 10, p. 5601.

    Article  CAS  Google Scholar 

  15. Kurochkin, D.V., Naraharisetty, S.G., and Rubtsov, I.V., Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 36, p. 14209.

    Article  CAS  Google Scholar 

  16. Lin, Z. and Rubtsov, I.V., Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 5, p. 1413.

    Article  CAS  Google Scholar 

  17. Lin, Z., Zhang, N., Jayawickramarajah, J., and Rubtsov, I.V., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 30, p. 10445.

    Article  CAS  Google Scholar 

  18. Rubtsova, N.I. and Rubtsov, I.V., Chem. Phys., 2013, vol. 422, p. 16.

    Article  CAS  Google Scholar 

  19. Rubtsova, N.I., Kurnosov, A.A., Burin, A.L., and Rubtsov, I.V., J. Phys. Chem. B, 2014, vol. 118, no. 28, p. 8381.

    Article  CAS  Google Scholar 

  20. Rubtsova, N.I., Nyby, C.M., Zhang, H., Zhang, B., Zhou, X., Jayawickramarajah, J., Burin, A.L., and Rubtsov, I.V., J. Chem. Phys., 2015, vol. 142, p. 212412.

    Article  Google Scholar 

  21. Yue, Y., Qasim, L.N., Kurnosov, A.A., Rubtsova, N.I., Mackin, R.T., Zhang, H., Zhang, B., Zhou, X., Jayawickramarajah, J., Burin, A.L., and Rubtsov, I.V., J. Phys. Chem. B, 2015, vol. 119, no. 21, p. 6448.

    Article  CAS  Google Scholar 

  22. Qasim, L.N., Atuk, E.B., Maksymov, A.O., Jayawickramarajah, J., Burin, A.L., and Rubtsov, I.V., J. Phys. Chem. C, 2019, vol. 123, p. 3381.

    Article  CAS  Google Scholar 

  23. Kurnosov, A.A., Rubtsov, I.V., and Burin, A.L., J. Chem. Phys., 2015, vol. 142. no. 1, p. 011101.

    Article  Google Scholar 

  24. Segal, D., Nitzan, A., and Hanggi, P., J. Chem. Phys., 2003, vol. 119, no. 13, p. 6840.

    Article  CAS  Google Scholar 

  25. Burin, A.L., Tesar, S.L., Kasyanenko, V.M., Rubtsov, I.V., and Rubtsov, G.I., J. Phys. Chem. C, 2010, vol. 114, no. 48, p. 20510.

    Article  CAS  Google Scholar 

  26. Tesar, S.L., Kasyanenko, V.M., Rubtsov, I.V., Rubtsov, G.I., and Burin, A.L., J. Phys. Chem. A, 2013, vol. 117, no. 2, p. 315.

    Article  CAS  Google Scholar 

  27. Benderskii, V.A. and Kats, E.I., JETP Lett., 2011, vol. 94, p. 459.

    Article  CAS  Google Scholar 

  28. Leitner, D.M., J. Phys. Chem. B, 2013, vol. 117, p. 12820.

    Article  CAS  Google Scholar 

  29. Benderskii, V.A., Kotkin, A.S., Rubtsov, I.V., and Kats, E.I., JETP Lett., 2013, vol. 98, no. 4, p. 219.

    Article  CAS  Google Scholar 

  30. Leitner, D.M., Adv. Phys., 2015, vol. 64, p. 445.

    Article  CAS  Google Scholar 

  31. Fujisaki, H., Yagi, K., Kikuchi, H., Takami, T., and Stock, G., Chem. Phys., 2017, vol. 482, p. 86.

    Article  CAS  Google Scholar 

  32. Pandey, H.D. and Leitner, D.M., J. Chem. Phys., 2017, vol. 147, no. 8, p. 084701.

    Article  Google Scholar 

  33. Naraharisetty, S.G., Kasyanenko, V.M., and Rubtsov, I.V., J. Chem. Phys., 2008, vol. 128, p. 104502.

    Article  Google Scholar 

  34. Leger, J.D., Nyby, C.M., Varner, C., Tang, J., Rubtsova, N.I., Yue, Y., Kireev, V.V., Burtsev, V.D., Qasim, L.N., Rubtsov, G.I., and Rubtsov, I.V., Rev. Sci. Instrum., 2014, vol. 85, no. 8, p. 083109.

    Article  Google Scholar 

  35. Nyby, C.M., Leger, J.D., Tang, J., Varner, C., Kireev, V.V., and Rubtsov, I.V., Opt. Express, 2014, vol. 22, no. 6, p. 6801.

    Article  Google Scholar 

  36. Hamm, P. and Zanni, M.T., Concepts and Methods of 2D Infrared Spectroscopy, Cambridge: Cambridge University Press, 2011.

    Book  Google Scholar 

  37. Mackin, R.T., Leong, T.X., Rubtsova, N.I., Burin, A.L., and Rubtsov, I.V., J. Phys. Chem. Lett., 2020, vol. 11, no. 12, p. 4578.

    Article  CAS  Google Scholar 

  38. Lin, Z., Keiffer, P., and Rubtsov, I.V., J. Phys. Chem. B, 2011, vol. 115, no. 18, p. 5347.

    Article  CAS  Google Scholar 

  39. Varner, C., Zhou, X., Saxman, Z.K., Leger, J.D., Jayawickramarajah, J., and Rubtsov, I.V., Chem. Phys., 2018, vol. 512, p. 20.

    Article  CAS  Google Scholar 

  40. Horng, M.L., Gardecki, J.A., Papazyan, A., and Maroncelli, M., J. Phys. Chem., 1995, vol. 99, no. 48, p. 17311.

    Article  CAS  Google Scholar 

  41. Qasim, L.N., Kurnosov, A.A., Yue, Y., Lin, Z., Burin, A.L., and Rubtsov, I.V.,J. Phys. Chem. C, 2016, vol. 120, no. 47, p. 26663.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study is supported by the NSF CHE-1900568 grant and the Tulane University Bridge Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Rubtsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsova, N.I., Lin, Z., Mackin, R.T. et al. How Intramolecular Vibrational Energy Transport Changes with Rigidity and Polarity of the Environment?. High Energy Chem 54, 427–435 (2020). https://doi.org/10.1134/S0018143920060120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920060120

Navigation