Skip to main content
Log in

Mechanism of Complexation of Cucurbiturils with Styryl Dyes in the Presence of Sodium Cations

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The complexation of styryl dyes 4-[(E)-2-(3,4-dimethoxyphenyl)]-1-ethylpyridinium perchlorate and trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide with cucurbit[n]urils (CBn) (n = 6, 7) in aqueous solutions in the presence of sodium sulfate with a concentration of 0 to 1 mol/L has been studied by stationary and time-resolved optical spectroscopy, electrochemical, and quantum chemical methods. Adding the electrolyte to the solution decomposes 1 : 1 inclusion complexes with the dyes (D+ · CBn) due to competitive formation of complexes of the cavitand with sodium cations: Na+ · CBn and Na+ · CBn · Na+. Their total formation constants have been determined to be β = 2760 and 168 600 M−2 for CB7 and CB6, respectively, which agrees with the results of quantum chemical calculations. At the same time, no evidence of the presence of Na+ · CBn · D+ type complexes has been found in solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., and Kim, K., Acc. Chem. Res., 2003, vol. 36, p. 621.

    Article  CAS  Google Scholar 

  2. Behrend, R., Meyer, E., and Rusche, F., Liebigs Ann. Chem., 1905, vol. 339, p. 1.

    Article  Google Scholar 

  3. Freeman, W.A., Mock, W.L., and Shih, N.-Y., J. Am. Chem. Soc., 1981, vol. 103, p. 7367.

    Article  CAS  Google Scholar 

  4. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., and Lu, X., RSC Adv., 2012, vol. 2, p. 1213.

    Article  CAS  Google Scholar 

  5. Ivanov, D.A., Petrov, N.Kh., Nikitina, E.A., Basilevsky, M.V., Vedernikov, A.I., Gromov, S.P., and Alfimov, M.V., J. Phys. Chem. A, 2011, vol. 115, p. 4505.

    Article  CAS  Google Scholar 

  6. Svirida, A.D., Ivanov, D.A., Petrov, N.Kh., Alfimov, M.V., Stenina, E.V., Laurinavichute, V.K., and Sviridova, L.N., Nanotech. Russ., 2017, vol. 12, nos. 3–4, p. 125.

    Article  CAS  Google Scholar 

  7. Rekharsky, M.V., Ko, Y.H., Selvapalam, N., Kim, K., and Inoue, Y., Supramol. Chem., 2007, vol. 19, p. 39.

    Article  CAS  Google Scholar 

  8. Buschmann, H.-J., Cleve, E., Mutihac, L., and Schollmeyer, E., J. Incl. Phenom. Macrocycl. Chem., 2009, vol. 65, p. 293.

    Article  CAS  Google Scholar 

  9. Buschmann, H.-J., Cleve, E., Jansen, K., Wego, A., and Schollmeyer, E., J. Incl. Phenom. Macrocycl. Chem., 2001, vol. 40, p. 117.

    Article  CAS  Google Scholar 

  10. Hoffmann, R., Knoche, W., Fenn, C., and Buschmann, H.-J., J. Chem. Soc., Faraday Trans., 1994, vol. 90, p. 1507.

    Article  CAS  Google Scholar 

  11. Marquez, C., Hudgins, R.R., and Nau, W.M., J. Am. Chem. Soc., 2004, vol. 126, p. 5806.

    Article  CAS  Google Scholar 

  12. Honda, Y., Hanaya, T., and Sueishi, Y., J. Incl. Phenom. Macrocycl. Chem., 2017, vol. 88, p. 253.

    Article  CAS  Google Scholar 

  13. Liu, P., Shao, X., Chipotdef, Ch., and Cai, W., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 24169.

    Article  CAS  Google Scholar 

  14. Ong, W. and Kaifer, A.E., Org. Chem., 2004, vol. 69, p. 1383.

    Article  CAS  Google Scholar 

  15. Tang, H., Fuentealba, D., Ko, Y.H., Selvapalam, N., Kim, K., and Bohne, C., J. Am. Chem. Soc., 2011, vol. 133, p. 20623.

    Article  CAS  Google Scholar 

  16. Bohne, C., Chem. Soc. Rev., 2014, vol. 43, p. 4037.

    Article  CAS  Google Scholar 

  17. Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Yu.A., Alfimov, M.V., and Howard J.A.K., Eur. J. Org. Chem., 2010, p. 2587.

  18. Shandarov, Yu.A., Kryukov, I.V., Ivanov, D.A., Iva-nov, A.A., Petrov, N.Kh., and Alfimov, M.V., Instrum. Exp. Tech., 2018, vol. 61, no. 4, p. 556.

    Article  CAS  Google Scholar 

  19. Petrov, N.Kh., Ivanov, D.A., and Alfimov, M.V., ACS Omega, 2019, vol. 4, p. 11500.

    Article  CAS  Google Scholar 

  20. Hammett, L., Physical Organic Chemistry: Reaction Rates, Equilibria and Mechanisms, 2nd ed., New York: McGraw-Hill, 1970.

    Google Scholar 

  21. Guggenheim, E.A. and Turgeon, J.C., Trans. Faraday Soc., 1955, vol. 51, p. 747.

    Article  CAS  Google Scholar 

  22. Shalashilin, V.I. and Kuznetsov, E.B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya (v prikladnoi matematike i mekhanike) (Parameter Continuation Method and Best Parameterization (in Applied Mathematics and Mechanics)), Moscow: Editorial URSS, 1999.

  23. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  24. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54, p. 820.

    Article  CAS  Google Scholar 

  25. Bankura, A., Carnevale, V., and Klein, M.L., J. Chem. Phys., 2013, vol. 138, p. 014501.

    Article  Google Scholar 

  26. Mahler, J. and Persson, I., Inorg. Chem., 2012, vol. 51, p. 425.

    Article  Google Scholar 

  27. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  28. Tahoon, M.A., Gomaa, E.A., and Suleiman, M.H.A., Open Chem., 2019, vol. 17, p. 260.

    Article  CAS  Google Scholar 

  29. Stenina, E.V., Sviridova, L.N., and Petrov N.Kh., Mendeleev Commun., 2018, vol. 28, p. 281.

    Article  CAS  Google Scholar 

  30. Marquez, C. and Nau, W.M., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 3155.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-03-00214) for synthesis of the styryl dyes, the Ministry of Education and Science of the Russian Federation for works carried out under the State Assignment of Photochemistry Center of “Crystallography and Photonics” Federal Scientific Research Center on optical measurements and quantum chemical calculations, and the Program of Development of the Moscow State University for electrochemical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Ivanov.

Additional information

Translated by A. Tatikolov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, I.V., Svirida, A.D., Shandarov, Y.A. et al. Mechanism of Complexation of Cucurbiturils with Styryl Dyes in the Presence of Sodium Cations. High Energy Chem 54, 403–413 (2020). https://doi.org/10.1134/S0018143920060107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920060107

Keywords:

Navigation