Skip to main content
Log in

Features and Ways to Upgrade Electron-Beam Wastewater Treatment

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Currently available industrial electron accelerators and radiation-chemical reaction vessels designed for them make it possible to irradiate no more than 20 000 m3 of water per day, which is many times less than practical needs. At the same time, there are technical prerequisites for the development of more powerful accelerators suitable for large-scale water treatment. Interest in the electron-beam water treatment is rapidly increasing in light of the acute problem of neutralizing biologically hazardous impurities. Various designs of accelerators and reaction vessels used for a multiple increase in the productivity of the electron beam purification of water are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ponomarev, A.V. and Ershov, B.G., Environ. Sci. Technol., 2020, vol. 54, p. 5331.

    Article  CAS  Google Scholar 

  2. Wojnarovits, L. and Takacs, E., J. Radioanal. Nucl. Chem., 2017, vol. 311, p. 973.

    Article  CAS  Google Scholar 

  3. Pikaev, A.K., Water Sci. Technol., 2001, vol. 44, p. 131.

    Article  CAS  Google Scholar 

  4. Meeroff, D.E., Bloetscher, F., and Shaha, B., Radiat. Phys. Chem., 2019, vol. 168, p. 108541.

    Article  Google Scholar 

  5. Chmielewski, A.G. and Han, B., Top. Curr. Chem., 2016, vol. 374, p. 68.

    Article  Google Scholar 

  6. Ponomarev, A.V., Radiat. Phys. Chem., 2020, vol. 172, p. 108812.

    Article  CAS  Google Scholar 

  7. Pikaev, A.K., High Energy Chem., 2001, vol. 35, p. 367.

    Article  CAS  Google Scholar 

  8. Industrial Radiation Processing with Electron Beams and X-rays, Berejka, A.J. and Cleland, M.R., Eds., Vienna: IAEA–IIA, 2011.

    Google Scholar 

  9. Kuksanov, N.K., Salimov, R., Fadeev, S.N., Nemytov, P.I., Golubenko, Y.I., Lavruchin, A.V., Cherepkov, V.G., and Kogut, D.A., Electrotech. Electron., 2018, vol. 53, nos. 7–8, p. 165.

    Google Scholar 

  10. Cleland, M.R., Fernald, R.A., and Maloof, S.R., Radiat. Phys. Chem., 1984, vol. 24, no. 1, p. 179.

    CAS  Google Scholar 

  11. Auslender, V.L., Makarov, I.G., Ostreiko, G.N., Panfilov, A.D., Podobaev, V.S., Romashko, N.D., Tarnetski, V.V., Tiunov, M.A., and Tkachenko, V.O., Instrum. Exp. Tech., 2009, vol. 52, p. 574.

    Article  CAS  Google Scholar 

  12. Han, B., Kyu Kim, J., Kim, Y., Seung Choi, J., and Young Jeong, K., Radiat. Phys. Chem., 2012, vol. 81, no. 9, p. 1475.

    Article  CAS  Google Scholar 

  13. He, S., Sun, W., Wang, J., Chen, L., Zhang, Y., and Yu, J., Radiat. Phys. Chem., 2016, vol. 124, p. 203.

    Article  CAS  Google Scholar 

  14. Kurucz, C.N., Waite, T.D., Otano, S.E., Cooper, W.J., and Nickelsen, M.G., Radiat. Phys. Chem., 2002, vol. 65, p. 367.

    Article  CAS  Google Scholar 

  15. Kuksanov, N.K., Golubenko, Y.I., Nemytov, P.I., Salimov, R.A., Fadeev, S.N., Korchagin, A.I., Kogut, D.A., Domarov, E.V., Lavruhin, A.V., Cherepkov, V.G., and Semenov, V.A., Electrotech. Electron., 2014, vol. 49, p. 168.

    Google Scholar 

  16. Tolstun, N.G., Efremov, A.V., Ivanov, A.S., Kuzhlev, A.N., Maznev, V.P., Machecha, A.I., Ovchinnikov, V.P., Pavluhov, D.E., Svinin, M.P., and Solnyshkov, D.A., in Proceedings of the 24th Russian Particle Accelerator Conference, RuPAC2014, Obnisk, Russia, p. 327.

  17. Woods, R. and Pikaev, A., Applied Radiation Chemistry: Radiation Processing. New York: Wiley, 1994.

    Google Scholar 

  18. Makarov, I.E., Ponomarev, A.V., and Han, B., Emerging Applications of Radiation Processing, IAEA-TECDOC-1386, Vienna: IAEA, 2003, p. 138.

    Google Scholar 

  19. Tolstun, N.G., Ivanov, A.S., Ovchinnikov, V.P., and Svinin, M.P., EPAC 2006. Edinburgh, Scotland, 2006, p. 2005.

  20. Ivanov, A., Ovchinnikov, V., Svinin, M., Tolstun, N., and Bogart, S., Vacuum, 2001, vol. 62, p. 225.

    Article  CAS  Google Scholar 

  21. Bryazgin, A.A., Kuksanov, N.K., and Salimov, R.A., Usp. Fiz. Nauk., 2018, vol. 188, p. 672.

    Article  Google Scholar 

  22. Domarov, E.V., Vorobyov, D.S., Golkovsky, M.G., Golubenko, Y.I., Korchagin, A.I., Kuksanov, N.K., Lavrukhin, A.V., Nemytov, P.I., Salimov, R.A., Semenov, A.V., Sorokin, A.V., Fadeev, S.N., Chakin, I.K., and Cherepkov, V.G., Sib. J. Phys., 2019, vol. 14, p. 5.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. N.K. Kuksanov (Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences) and Prof. N.G. Tolstun (Efremov Research Institute of Electrophysical Apparatus) for helpful discussions and previous collaborations.

Funding

This work was performed within the framework of theme no. AAAA-A16-116121410087-6 of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ponomarev.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Ershov, B.G. & Ponomarev, A.V. Features and Ways to Upgrade Electron-Beam Wastewater Treatment. High Energy Chem 54, 462–468 (2020). https://doi.org/10.1134/S0018143920060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920060089

Keywords:

Navigation