Skip to main content
Log in

Förster Resonance Energy Transfer in Aggregates of CdSe Colloidal Quantum Dots with Adsorbed meso-Tetra(3-pyridyl)porphyrin

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The influence of meso-tetra(3-pyridyl)porphyrin (TPyP) on Förster resonance energy transfer (FRET) in aggregates of CdSe colloidal quantum dots (CQDs) has been studied. Upon the formation of such aggregates, interparticle FRET arises, leading to two effects. First, due to blinking, the observed luminescence quantum yield decreases. Second, due to inhomogeneous broadening of the optical spectra of CQDs, the luminescence band shifts to the long-wavelength side. The introduction of TPyP into the system leads to its adsorption on CQDs with multi-timescale kinetics. As a result, FRET from CQDs to TPyP arises, which effectively competes with FRET between CQDs themselves. As a result, the red shift arising due to aggregation of CQDs is significantly reduced. In this case, the dye adsorption has no effect on the position of the luminescence peak of the non-aggregated particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Razumov, V.F., Fotonika kolloidnykh kvantovykh tochek (Photonics of Colloidal Quantum Dots), Klyuev, M.V., Ed., Ivanovo: Ivanovskii gosudarstvennyi universitet, 2017.

  2. Razumov, V.F., Usp. Fiz. Nauk, 2016, vol. 186, p. 1368.

    Article  Google Scholar 

  3. Brichkin, S.B. and Razumov, V.F., Russ. Chem. Rev., 2016, vol. 85, p. 1297.

    CAS  Google Scholar 

  4. Hildebrandt, N., Spillmann, C.M., Algar, W.R., Pons, T., Stewart, M.H., Oh, E., Susumu, K., Diaz, S.A., Delehanty, J.B., and Medintz, I.L., Chem. Rev., 2017, vol. 117, p. 536.

    Article  CAS  PubMed  Google Scholar 

  5. Shirasaki, Y., Supran, G.J., Bawendi, M.G., and Bulovic, V., Nat. Photonics, 2013, vol. 7, p. 13.

    CAS  Google Scholar 

  6. Kagan, C.R., Murray, C.B., and Bawendi, M.G., Phys. Rev. B, 1996, vol. 54, p. 8633.

    CAS  Google Scholar 

  7. Crooker, S.A., Hollingsworth, J.A., Tretiak, S., and Klimov, V.I., Phys. Rev. Lett., 2002, vol. 89, p. 186 802.

    Google Scholar 

  8. Wuister, S.F., Koole, R., de Mello Donegá, C., and Meijerink, A., J. Phys. Chem. B, 2005, vol. 109, p. 5504.

    CAS  PubMed  Google Scholar 

  9. Clark, S.W., Harbold, J.M., and Wise, F.W., J. Phys. Chem. C, 2007, vol. 111, p. 7302.

    CAS  Google Scholar 

  10. Bose, R., McMillan, J.F., Gao, J., Rickey, K.M., Chen, C.J., Talapin, D.V., Murray, C.B., and Wong, C.W., Nano Lett., 2008, vol. 8, p. 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Thuy, U.T.D., Thuy, P.T., Liem, N.Q., Li, L., and Reiss, P., Appl. Phys. Lett., 2010, vol. 96, p. 073 102.

    Article  CAS  Google Scholar 

  12. Poulikakos, L.V., Prins, F., and Tisdale, W.A., J. Phys. Chem. C, 2014, vol. 118, p. 7894.

    Article  CAS  Google Scholar 

  13. Achermann, M., Petruska, M.A., Crooker, S.A., and Klimov, V.I., J. Phys. Chem. B, 2003, vol. 107, p. 13782.

    Article  CAS  Google Scholar 

  14. Miyazaki, J. and Kinoshita, S., Phys. Rev. B, 2012, vol. 86, p. 035 303.

    Article  CAS  Google Scholar 

  15. Miyazaki, J. and Kinoshita, S., J. Phys. Soc. Jpn., 2012, vol. 81, p. 074 708.

    Article  CAS  Google Scholar 

  16. Miyazaki, J., Kinoshita, S., and Jin, T., J. Lumin., 2011, vol. 131, p. 539.

    Article  CAS  Google Scholar 

  17. Brichkin, S.B., Tovstun, S.A., Spirin, M.G., and Razumov, V.F., High Energy Chem., 2017, vol. 51, p. 455.

    Article  CAS  Google Scholar 

  18. Tovstun, S.A., Brichkin, S.B., Spirin, M.G., Gak, V.Yu., and Razumov, V.F., High Energy Chem., 2017, vol. 51, p. 449.

    Article  CAS  Google Scholar 

  19. Nevidimov, A.V., Kremenets, V.A., Spirin, M.G., Nikolenko, L.M., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2019, vol. 53, p. 125.

    Article  CAS  Google Scholar 

  20. Tovstun, S.A., Brichkin, S.B., Spirin, M.G., Gak, V.Yu., and Razumov, V.F., High Energy Chem., 2017, vol. 51, p. 449.

    CAS  Google Scholar 

  21. Brichkin, S.B., Tovstun, S.A., Spirin, M.G., and Razumov V.F., High Energy Chem., 2017, vol. 51, p. 455.

    CAS  Google Scholar 

  22. Nevidimov, A.V. and Razumov, V.F., High Energy Chem., 2020, vol. 54, p. 28.

    CAS  Google Scholar 

  23. Biesaga, M., Pyrzyńska, K., and Trojanowicz, M., Talanta, 2000, vol. 51, p. 209.

    CAS  PubMed  Google Scholar 

  24. Frasko, M.F., Vamvakaki, V., and Chaniotakis, N., J. Nanopart. Res., 2010, vol. 12, p. 1449.

    Google Scholar 

  25. Zenkevich, E., Cichos, F., Shulga, A., Petrov, E.P., Blaudeck, T., and von Borczyskowski, C., J. Phys. Chem. B, 2005, vol. 109, p. 8679.

    CAS  PubMed  Google Scholar 

  26. Zenkevich, E.I., Blaudeck, T., Shulga, A.M., Cichos, F., and von Borczyskowski, C., J. Lumin., 2007, vol. 122–123, p. 784.

    Google Scholar 

  27. Kilin, D.S., Tsemekhman, K., Prezhdo, O.V., Zenkevich, E.I., and von Borczyskowski, C., J. Photochem. Photobiol., A, 2007, vol. 190, p. 342.

    CAS  Google Scholar 

  28. Zen’kevich, E.I., Sagun, E.I., Yarovoi, A.A., Shulga, A.M., Knyukshto, V.N., Stupak, A.P., and von Borczyskowski, C., Opt. Spectrosc., 2007, vol. 103, p. 958.

    Google Scholar 

  29. Blaudeck, T., Zenkevich, E.I., Cichos, F., and von Borczyskowski, C., J. Phys. Chem. C, 2008, vol. 112, p. 20 251.

    Google Scholar 

  30. Zenkevich, E.I., Sagun, E.I., Knyukshto, V.N., Stasheuski, A.S., Galievsky, V.A., Stupak, A.P., Blaudeck, T., and von Borczyskowski, C., J. Phys. Chem. C, 2011, vol. 115, p. 21 535.

    Article  CAS  Google Scholar 

  31. Zenkevich, E.I., Stupak, A.P., Kowerko, D., and von Borczyskowski, C., Chem. Phys., 2012, vol. 406, p. 21.

    Article  CAS  Google Scholar 

  32. Blaudeck, T., Zenkevich, E.I., Abdel-Mottaleb, M., Szwaykowska, K., Kowerko, D., Cichos, F., and von Borczyskowski, C., ChemPhysChem, 2012, vol. 13, p. 959.

    Article  CAS  PubMed  Google Scholar 

  33. Zenkevich, E.I., Blaudeck, T., Kowerko, D., Stupak, A.P., Cichos, F., and von Borczyskowski, C., Macroheterocycles, 2012, vol. 5, p. 98.

    Article  CAS  Google Scholar 

  34. Zenkevich, E.I. and von Borczyskowski, C., J. Porphyrins Phthalocyanines, 2014, vol. 18, p. 1.

    Article  CAS  Google Scholar 

  35. Zenkevich, E., Stupak, A., Gohler, C., Krasselt, C., and von Borczyskowski, C., ACS Nano, 2015, vol. 9, p. 2886.

    Article  CAS  PubMed  Google Scholar 

  36. Tovstun, S.A., Martyanova, E.G., Brichkin, S.B., Spirin, M.G., Gak, V.Yu., Kozlov, A.V., and Razumov, V.F., J. Lumin., 2018, vol. 200, p. 151.

    Article  CAS  Google Scholar 

  37. Nevidimov, A.V. and Razumov, V.F., Colloid J., 2018, vol. 80, p. 527.

    Article  CAS  Google Scholar 

  38. Tovstun, S.A., High Energy Chem., 2016, vol. 50, p. 327.

    Article  CAS  Google Scholar 

  39. Magde, D., Wong, R., and Seybold, P.G., Photochem. Photobiol., 2002, vol. 75, p. 327.

    Article  CAS  PubMed  Google Scholar 

  40. Parker, C.A., Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry, Amsterdam: Elsevier, 1968.

    Google Scholar 

  41. Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2015, vol. 49, p. 193.

    CAS  Google Scholar 

  42. Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2015, vol. 49, p. 426.

    CAS  Google Scholar 

  43. Jasieniak, J., Smith, L., van Embden, J., and Mulvaney, P., J. Phys. Chem. C, 2009, vol. 113, p. 19468.

    CAS  Google Scholar 

  44. Tovstun S.A. and Razumov, V.F., High Energy Chem., 2016, vol. 50, p. 281.

    CAS  Google Scholar 

  45. Leatherdale, C.A., Woo, W.-K., Mikulec, F.V., and Bawendi, M.G., J. Phys. Chem. B, 2002, vol. 106, p. 7619.

    CAS  Google Scholar 

  46. Tovstun S.A. and Razumov, V.F., High Energy Chem., 2015, vol. 49, p. 352.

    CAS  Google Scholar 

  47. Gong, K., Zeng, Y., and Kelley, D.F., J. Phys. Chem. C, 2013, vol. 117, p. 20 268.

    Google Scholar 

Download references

Funding

This work was performed under the State Assignment no. АААА-А19-119070790003-7 and supported by the Government of the Russian Federation (agreement no. 074-02-2018-286) and the Russian Foundation for Basic Research (project no. 18-29-20062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Nikolenko.

Additional information

Translated by A. Tatikolov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolenko, L.M., Gadomskaya, A.V., Spirin, M.G. et al. Förster Resonance Energy Transfer in Aggregates of CdSe Colloidal Quantum Dots with Adsorbed meso-Tetra(3-pyridyl)porphyrin. High Energy Chem 54, 316–327 (2020). https://doi.org/10.1134/S0018143920050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920050124

Keywords:

Navigation