Skip to main content
Log in

Influence of Accelerated Protons on the Molecular–Topological Structure of Polyethylene

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The effect of MeV protons on the surface properties of a low-density polyethylene film was studied using EPR spectroscopy and thermomechanical spectrometry. The diblock semicrystalline structure of polyethylene was preserved upon proton irradiation; the molecular weight decreased, and the weight fraction of the crystalline modification increased. In the EPR spectrum of the irradiated polymer, allyl radicals were predominantly detected. At high proton fluences, the hyperfine structure disappeared from the EPR spectra, and they turned into a singlet with a line width of 4.1 or 3.5 mT as recorded at 23 and –196°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. https://otherreferats.allbest.ru/manufacture/00598127_0.htm 06012020

  2. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya: Tverdoe telo i polimery: Prikladnye aspekty (Modern Radiation Chemistry: Solids and Polymers: Applied Aspects), Moscow: Nauka, 1987.

  3. Carosena, M., Giuseppe, G., and Umberto, P., Mater. Manuf. Process., 2003, vol. 18, p. 135.

    Article  Google Scholar 

  4. Coffey, T., Urquhart, S.G., and Ade, H., J. Electron Spectrosc. Relat. Phenom., 2002, vol. 122, p. 65.

    Article  CAS  Google Scholar 

  5. Elsharkawy, E.R., Hegazi, E.M., and Abd El megeed, A.A., Int. J. Mater. Chem. Phys., 2015, vol. 1, p. 384.

    Google Scholar 

  6. Tabata, Y., J. Nucl. Mater., 1985, vol. 133, p. 781.

    Article  Google Scholar 

  7. Foti, A.M., Calcagno, L., Baratta, G.A., Spinella, F., and Strazzulla, G., Radiat. Eff. Defects Solids, 1990, vol. 112, p. 61.

    CAS  Google Scholar 

  8. Ziaie, F., Anvari, F., Ghaffari, M., and Borhani, M., Nukleonika, 2005, vol. 50, p. 125.

    CAS  Google Scholar 

  9. Qu, B. and Rarby, B., Polym. Eng. Sci., 2004, vol. 35, p. 1161.

    Google Scholar 

  10. Charlesby, A. and Woods, R.J., Eur. Polym. J., 1965, vol. 1, p. 161.

    Article  Google Scholar 

  11. Lyons, B.J., Nature, 1962, vol. 195, p. 690.

    Article  Google Scholar 

  12. Ivanov, V.S., Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers), Leningrad: Khimiya, 1988.

  13. Gould, A.R. and Ledbury, K.J., Proc. R. Soc. A, 1964, vol. 277, p. 348.

    Google Scholar 

  14. Johnson, W.C. and Lyons, B.J., Radiat. Phys. Chem., 1995, vol. 46, p. 829.

    Article  CAS  Google Scholar 

  15. Kim, S. and Nho, Y.Ch.,Controlling of Degradation Effects in Radiation Processing of Polymers, Vienna: IAEA, 2009.

    Google Scholar 

  16. Sirota, A.G., Modifikatsiya struktury i svoistv poliolefi-nov (Modifications of Structure and Properties of Polyolefins), Leningrad: Khimiya, 1984.

  17. Seguchi, T., Hayakawa, N., Yoshida, K., and Tamura, N., Radiat. Phys. Chem., 1995, vol. 26, p. 221.

    Google Scholar 

  18. Fiala, T., Manas, D., Manas, M., and Ovsik, M., Mod.Machin. Sci. J., 2016, p. 1095.

    Google Scholar 

  19. Allayarov, S.R., Shaimukhametova, I.F., Bogdanova, S.A., Belov, G.P., Golodkov, O.N., and Dixon, D.A., High Energy Chem., 2018, vol. 52, p. 294.

    Article  CAS  Google Scholar 

  20. Singh, A., Radiat. Phys. Chem., 1999, vol. 56, p. 375.

    CAS  Google Scholar 

  21. Ol’khov, Yu.A., Allayarov, S.R., Smirnov, Yu.N., Ol’khova, O.M., and Belov, G.P., High Energy Chem., 2005, vol. 39, p. 373.

    Google Scholar 

  22. Henley, E.J. and Johnson, E.R., The Chemistry and Physics of High Energy Reactions, Washington, D.C.: University Press, 1969.

    Google Scholar 

  23. Ohnishi, S., Sugimoto, S., and Nitta, I., J. Polym. Sci., Part A: Polym. Chem., 1963, vol. 1, p. 605.

    CAS  Google Scholar 

  24. Kiselev, A.G., Mokul’skii, M.A., and Lazurkin, Yu.S., Vysokomol. Soedin., 1960, vol. 2, p. 1678.

    CAS  Google Scholar 

  25. Antonova, E.D., Akhvlediadi, I.G., and Slovokhotova, N.A., Vysokomol. Soedin.,Ser. B, 1976, vol. 18, p. 806.

    CAS  Google Scholar 

  26. Milinchuk, V.K., Klinshpont, E.R., and Pshezhetskii, S.Ya., Makroradikaly (Macroradicals), Moscow: Khimiya, 1980.

    Google Scholar 

  27. Naheed, N., Jahan, M.S., and Ridley, M., Nucl. In-strum. Methods Phys. Res.,Sect. B, 2003, vol. 208, p. 204.

    CAS  Google Scholar 

  28. Saenko, V.S., Feldman, V.I., Tyutnev, A.P., Ikhsanov, R.Sh., Nereto, M.O., and Baranova, I.A., High Energy Chem., 2011, vol. 45, p. 48.

    CAS  Google Scholar 

  29. Tal’roze, V.L., Izv. Akad. Nauk SSSR, Ser. Khim., 1959, p. 369.

  30. Tamura, N., J. Phys. Chem., 1973, vol. 77, p. 40.

    Article  Google Scholar 

  31. Kashiwabara, H. and Hori, Y., Radiat. Phys. Chem., 1981, vol. 18, p. 1061.

    CAS  Google Scholar 

  32. Finkel’, E.E. and Braginskii, R.P., Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers), Kargin, V.A., Ed., Moscow: Nauka, 1973, p. 195.

    Google Scholar 

  33. Pikaev, A.K., High Energy Chem., 2001, vol. 35, p. 367.

    Article  CAS  Google Scholar 

  34. Sviridov, D.V., Usp. Khim., 2001, vol. 71, p. 363.

    Google Scholar 

  35. Svorcik, V., Kolarova, K., Slepicka, P., Mackova, A., Novotna, M., and Hnatowicz, V., Polym.Degrad. Stab., 2006, p. 1219.

    Google Scholar 

  36. Zyryanov, S.S., Kruzhalov, A.V., Neshov, F.G., and Ryaboukhin, O.V., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2015, vol. 9, p. 368.

    Article  CAS  Google Scholar 

  37. https://stimul.online/news/novyy materialdlyazashchitykosmonavtovotradiatsii/08012020

  38. Ol’khov, Yu.A., Allayarov, S.R., Smirnov, Yu.N., Ol’khova, O.M., Kispert, L.D., Thrasher, J.S., Dixon, D.A., and Nikles, D.E., High Energy Chem., 2007, vol. 41, p. 430.

    Article  Google Scholar 

  39. Ol’khov, Yu.A., Allayarov, S.R., and Kochetkova, G.V., in Sbornik nauchnykh trudov: “Soedineniya ftora. Khimiya, Tekhnologiya, primenenie” (Fluorine Compounds: Chemistry, Technology and Applications), St. Petersburg: Teza, 2009, p. 227.

  40. Jurkowski, B. and Olkhov, Y.A., Thermochim. Acta, 2004, vol. 414, p. 243.

    CAS  Google Scholar 

  41. Ferry, J.D., Viscoelastic Properties of Polymers, New York: Wiley, 1961.

    Google Scholar 

  42. Beaman, R.G., J. Polym. Sci., 1952, vol. 9, p. 470.

    CAS  Google Scholar 

  43. Kashiwagi, M., J. Chem. Phys., 1962, vol. 36, p. 575.

    CAS  Google Scholar 

  44. Molin, Yu.N., Koritskii, A.T., Shamshev, V.N., and Buben, N.Ya., Vysokomol. Soedin., 1962, vol. 4, p. 690.

    CAS  Google Scholar 

  45. Slovokhotova, H.A. and Karpov, V.L., Sbornik rabot po radiatsionnoi khimii (Collection of Papers on Radiation Chemistry), Bach, N.A., Ed., Moscow: Izd. Akad. Nauk SSSR, 1955.

    Google Scholar 

Download references

Funding

This work was carried out within the framework of a state contract (no. 0089-2019-0008, state registration no. AAAA-A19-119041090087-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. R. Allayarov or D. A. Dixon.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allayarov, S.R., Olkhov, Y.A., Dixon, D.A. et al. Influence of Accelerated Protons on the Molecular–Topological Structure of Polyethylene. High Energy Chem 54, 368–373 (2020). https://doi.org/10.1134/S0018143920050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920050021

Keywords:

Navigation