Skip to main content
Log in

Combined Effect of High-Temperature Shear Grinding and Gamma-Radiation on the Thermal Properties of Polyethylene

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

During γ-irradiation of polyethylene, its gradual amorphization accompanied by a decrease in the melting point and the heat of melting occurs. Almost complete amorphization of the polymer with crosslinking occurs at a dose of 1400 Mrad according to DSC data. In this case, the polymer retains insignificant crystallinity with a melting heat of 6.2 J/g, which is almost an order of magnitude lower than the melting heat of 118 J/g of unirradiated polyethylene. Depending on the radiation dose, there are three conditional ranges of change in DSC curve parameters: at doses up to 200, from 200 to 800, and over 800 Mrad, associated with different dose dependences of the simultaneously occurring processes of crosslinking and degradation of polymer macromolecules, as well as with radiation annealing of strained areas. High-temperature shear grinding of polyethylene, destroying the crystalline structure, leads to a decrease in the absolute value of the heats of melting and crystallization of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Holmes-Walker, W.A., Polymer Conversion, London: Applied Science, 1975.

    Google Scholar 

  2. Handbook of Plastics Recycling, La Mantia, F., Ed., Shrewsbury: Rapra Technology, 2002.

  3. Scheirs, J., Polymer Recycling: Science, Technology and Applications, Chichester: Wiley, 1998.

    Google Scholar 

  4. Recycled Polymers: Chemistry and Processing, vol. 1, Thakur, V.K., Ed., Shawbury: Smithers Rapra Technology, 2015.

  5. Rakhimov, M.A., Rakhimova, G.M., and Imanov, E.M., Fundam. Issled., 2014, no. 8, p. 331.

  6. Wolfson, S.A. and Nikolskii, V.G., Polym. Eng. Sci., 1997, vol. 37, no. 8, p. 1294.

    Article  CAS  Google Scholar 

  7. Balyberdin, V.N. and Nikol’skii, V.G., Tekh. Mashinostr., 1998, no. 4, p. 94.

  8. Nikol’skii, V.G., Vtorich. Resursy, 2002, no. 1, p. 48.

  9. Nikol’skii, V.G., Vnukova, L.V., Vol’fson, S.A., Dudareva, T.V., and Krasotkina, I.A., Vtorich. Resursy, 2002, no. 6, p. 45.

  10. Nikol’skii, V.G. and Krasotkina, I.A., Stroit. Orb., 2009, no. 12, p. 50.

  11. Nikol’skii, V.G., Vol’fson, S.A., Dudareva, T.V., and Krasotkina, I.A., Nauka Proizv., 2002, no. 3(53), p. 13.

  12. Allayarov, S.R., Nikol’skii, V.G., Sharpatyi, V.A., Kispert, L.D., Dixon, D.A., and Belov, G.P., in Materialy nauchno-prakticheskoi konferentsii po probleme: “Polimerizatsionnye plastmassy, proizvodstvo i pererabotka, 2006” (Proceedings of Scientific-and Practical Conference on Polymerization Plastics: Production and Processing’2006), St. Petersburg, Russia, 2006, p. 117.

  13. Allayarov, S.R., Nikol’skii, V.G., Dudareva, T.V., Sharpatyi, V.A., Kispert, L.D., and Dixon, D.A., in Materialy IV Mezhdunarodnoi Konferentsii “Sotrudnichestvo dlya resheniya problem otkhodov” (Proceedings of IV International Conference on Cooperation for Solving Waste Problems), Kharkov, Ukraine, 2007, p. 123.

  14. Allayarov, S.R., Konovalikhin, S.V., Olkhov, Yu.A., Jackson, V.E., Kispert, L.D., Dixon, D.A., Ila, D., and Lappan, U., J. Fluorine Chem., 2007, vol. 128, p. 575.

    Article  CAS  Google Scholar 

  15. Allayarov, S.R., Nikol’skii, V.G., Olkhov, Yu.A., and Dudareva, T.V., in Ekologicheskaya, promyshlennaya i energeticheskaya bezopasnost’-2017 (Environmental, Industrial, and Energy Safety’2007), Sevastopol, Russia, 2017, p. 64.

  16. Ol’khov, Yu.A., Allayarov, S.R., Chernysheva, T.E., Barkalov, I.M., Kispert, L.D., Thrasher, J.S., Fernandes, R.E., and Nikles, D.E., High Energy Chem., 2006, vol. 40, no. 5, p. 310.

    Article  Google Scholar 

  17. Allayarov, S.R., Olkhov, Yu.A., Dixon, D.A., and Nikles, D.E., High Energy Chem., 2014, vol. 48, no. 2, p. 134.

    Google Scholar 

  18. Allayarov, S.R., Olkhov, Yu.A., Muntele, C.I., Dixon, D.A., and Ila, D., High Energy Chem., 2014, vol. 48, no. 3, p. 162.

    Article  CAS  Google Scholar 

  19. Ol’khov, Yu.A., Allayarov, S.R., Muntele, K.I., and Dixon, D.A., High Energy Chem., 2014, vol. 48, no. 3, p. 137.

    Article  Google Scholar 

  20. Knyazev, V.K. and Sidorov, N.A., Obluchennyi polietilen v tekhnike (Irradiated Polyethylene in Engineering), Moscow: Khimiya, 1974.

  21. Sirota, A.G., Modifikatsiya struktury i svoistva poliolefinov (Structure Modification and Properties of Polyolefins), Moscow: Khimiya, 1984.

  22. Smirnov, Yu.N., Ol’khov, Yu.A., Allayarov, S.R., Lesnichaya, V.A., and Belov, G.P., Plast. Massy, 2008, no. 2, p. 12.

  23. The Radiation Chemistry of Macromolecules, Dole, M., Ed., New York: Academic, 1972.

    Google Scholar 

  24. Abramov, V.V. and Chalaya, N.M., Plast. Massy, 2003, no. 5, p. 4.

  25. Ivanov, V.S., Radiatsionnaya khimiya makromolekul (Radiation Chemistry of Macromolecules,), Leningrad: Khimiya, 1988.

  26. Ol’khov, Yu.A., Allayarov, S.R., Smirnov, Yu.N., Ol’khova, O.M., and Belov, G.P., High Energy Chem., 2005, no. 6, p. 373.

  27. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya: Tverdoe telo i polimery: Prikladnye aspekty (Modern Radiation Chemistry: Solids, Polymers and Applied Aspects), Moscow: Nauka, 1987.

  28. Carosena, M., Giuseppe, G., and Umberto, P., Mater. Manuf. Process., 2003, vol. 18, no. 1, p. 135.

    Article  Google Scholar 

  29. Coffey, T., Urquhart, S.G., and Ade, H., J. Electron Spectrosc. Relat. Phenom., 2002, vol. 122, p. 65.

    Article  CAS  Google Scholar 

  30. Elsharkawy, E.R., Hegazi, E.M., and Abd Elmegeed, A.A., Int. J. Mater. Chem. Phys., 2015, vol. 1, no. 3, p. 384.

    Google Scholar 

  31. Tabata, Y., J. Nucl. Mater., 1985, vol. 133, p. 781.

    Article  Google Scholar 

  32. Foti, A.M., Calcagno, L., Baratta, G.A., Spinella, F., and Strazzulla, G., Radiat. Eff. Defects Solids, 1990, vol. 112, no. 3, p. 61.

    Article  CAS  Google Scholar 

  33. Allayarov, S.R., Shaimukhametova, I.F., Bogdanova, S.A., Belov, G.P., Golodkov, O.N., and Dixon, D.A., High Energy Chem., 2018, vol. 52, no. 4, p. 294.

    Article  CAS  Google Scholar 

  34. Ziaie, F., Anvari, F., Ghaffari, M., and Borhani, M., Nukleonika, 2005, vol. 50, no. 3, p. 125.

    CAS  Google Scholar 

  35. Qu, B. and Rarby, B., Polym. Eng. Sci., 2004, vol. 35, no. 14, p. 1161.

    Article  Google Scholar 

  36. Charlesby, A. and Woods, R.J., Eur. Polym. J., 1965, vol. 1, no. 3, p. 161.

    Article  Google Scholar 

  37. Lyons, B.J., Nature, 1962, vol. 195, p. 690.

    Article  Google Scholar 

  38. Gould, A.R. and Ledbury, K.J., Proc. R. Soc. London, Ser. A, 1964, vol. 277, no. 1370, p. 348.

    Article  Google Scholar 

  39. Johnson, W.C. and Lyons, B.J., Radiat. Phys. Chem., 1995, vol. 46, nos. 4–6, p. 829.

    Article  CAS  Google Scholar 

  40. Kim, S. and Nho, Y.Ch., Controlling of Degradation Effects in Radiation Processing of Polymers, Vienna: IAEA, 2009.

    Google Scholar 

  41. Ol’khov, Yu.A., Allayarov, S.R., Smirnov, Yu.N., Ol’khova, O.M., Kispert, L.D., Thrasher, J.S., Dixon, D.A., and Nikles, D.E., High Energy Chem., 2007, vol. 41, no. 6, p. 430.

    Article  Google Scholar 

  42. Allayarov, S.R., Smirnov, Yu.N., Belov, G.P., Kispert, L.D., Thrasher, J.S., and Nikles, D.E., High Energy Chem., 2005, vol. 39, no. 5, p. 295.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed on the topic no. 0089-2019-0008 State assignment, state registration no. AAAA-A19-119041090087-4, using the equipment of the Analytical Center for Shared Use at the Institute of Problems of Chemical Physics and the Gammatok-100 unique radiation facility at the same institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. R. Allayarov or V. G. Nikol’skii.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkov, G.V., Demidov, S.V., Allayarov, S.R. et al. Combined Effect of High-Temperature Shear Grinding and Gamma-Radiation on the Thermal Properties of Polyethylene. High Energy Chem 54, 130–135 (2020). https://doi.org/10.1134/S0018143920020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920020137

Keywords:

Navigation