Skip to main content
Log in

Study of Defect Formation Processes in Zinc Nanostructures under Ion Beam Irradiation

  • RADIATION CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A model of the formation of defects and their effect on the change in the physicochemical and structural properties of zinc-based metal nanostructures is proposed. In this study, it has been found that an increase in the radiation dose leads to the appearance of inhomogeneous amorphous inclusions in the structure, which can initiate partial destruction of Zn nanotubes. At the same time, for heavy ions Kr14+ and Xe22+, cascades of defects lead to the formation of porous regions on the surface of nanostructures, which result from amorphization of the structure. When nanostructures are irradiated with heavy ion fluxes with an energy >100 MeV, as a result of the interaction of incident particles with lattice atoms, the size and number of subcascade and cascade inclusions increases, which leads to partial destruction of the structure and a change in morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Klaumünzer, S., Nucl. Instrum. Methods Phys. Res.,Sect. B, 2006, vol. 244, no. 1, p. 1.

    Google Scholar 

  2. Petrov, A. and Kadyrzhanov, K., Mater. Res. Express, 2019, vol. 6, no. 7, p. 075 072.

    Article  CAS  Google Scholar 

  3. Gladkikh, T., et al., Mater. Charact., 2019, vol. 150, p. 88.

    Article  CAS  Google Scholar 

  4. Gao, M.R., et al., Chem. Soc. Rev., 2013, vol. 42, no. 7, p. 2986.

    Article  CAS  PubMed  Google Scholar 

  5. Valles, G., et al., Acta Mater., 2017, vol. 122, p. 277.

    Article  CAS  Google Scholar 

  6. Kozlovskiy, A., et al., Mater. Res. Express, 2019, vol. 6, no. 5, p. 055 026.

    Article  CAS  Google Scholar 

  7. Shlimas, D., Vacuum, 2019, vol. 163, p. 103.

    Article  CAS  Google Scholar 

  8. Kadyrzhanov, D.B., et al., High Energy Chem., 2018, vol. 52, no. 4, p. 302.

    Article  CAS  Google Scholar 

  9. Kaikanov, M., et al., Mater. Res. Express, 2018, vol. 5, no. 7, p. 075 010.

    Article  CAS  Google Scholar 

  10. Hu, X., Li, G., and Yu, J.C., Langmuir, 2009, vol. 26, no. 5, p. 3031.

    Article  CAS  Google Scholar 

  11. Shkir, M., et al., Physica B (Amsterdam), 2017, vol. 508, p. 41.

    Article  CAS  Google Scholar 

  12. Kaliekperov, M., et al., Mater. Res. Express, 2018, vol. 5, no. 5, p. 055 008.

    Article  CAS  Google Scholar 

  13. Kaikanov, M., et al., Inorg. Mater., 2018, vol. 54, no. 4, p. 386.

    Article  Google Scholar 

  14. Kozlovskii, A.L., et al., High Energy Chem., 2018, vol. 52, no. 2, p. 152.

    Article  CAS  Google Scholar 

  15. Li, F., et al., Nanotechnology, 2017, vol. 28, no. 12, p. 125 702.

    Article  CAS  Google Scholar 

  16. Lin, L., et al., J. Alloys Compd., 2017, vol. 695, p. 1523.

    Article  CAS  Google Scholar 

  17. Shlimas, D.I., et al., Mater. Res. Express, 2018, vol. 5, no. 3, p. 035 021.

    Article  CAS  Google Scholar 

  18. Corio, P., et al., Chem. Phys. Lett., 2002, vol. 360, nos. 5−6, p. 557.

    Article  CAS  Google Scholar 

  19. Kaliekperov, M., et al., Mater. Res. Express, 2018, vol. 5, no. 3, p. 035 054.

    Article  CAS  Google Scholar 

  20. Sebastian, V., et al., Cryst. Growth Des., 2017, vol. 17, no. 5, p. 2700.

    Article  CAS  Google Scholar 

  21. Kenzhina, I., et al., Nanosci. Technol.,Int. J., 2018, vol. 9, no. 2, p. 139.

    Google Scholar 

  22. Krasheninnikov, A.V. and Nordlund, K., J. Appl. Phys., 2010, vol. 107, no. 7, p. 3.

    Article  CAS  Google Scholar 

  23. Shlimas, D.I., et al., Crystallogr. Rep., 2017, vol. 62, no. 5, p. 739.

    Article  CAS  Google Scholar 

  24. Kozlovskiy, A., et al., Mater. Res. Express, 2017, vol. 4, no. 10, p. 105 042.

    Article  CAS  Google Scholar 

  25. Zdorovets, M.V., et al., Phys. Lett. A, 2018, vol. 382, no. 4, p. 175.

    Article  CAS  Google Scholar 

  26. Zhang, X., et al., Scr. Mater., 2002, vol. 46, no. 9, p. 661.

    Article  CAS  Google Scholar 

  27. Hu, J.Q., et al., Chem. Mater., 2003, vol. 15, no. 1, p. 305.

    Article  CAS  Google Scholar 

  28. Kaur, A. and Chauhan, R.P., Radiat. Eff. Defects Solids, 2014, vol. 169, no. 6, p. 513.

    Article  CAS  Google Scholar 

  29. Kozlovskiy, A.L., et al., Pet. Chem., 2016, vol. 56, no. 4, p. 330.

    Article  CAS  Google Scholar 

  30. Simon, P. and Gogotsi, Y., Nat. Mater., 2008, vol. 7, no. 11, p. 845.

    Article  CAS  PubMed  Google Scholar 

  31. Kozlovskii, A.L., et al., Tech. Phys. Lett., 2016, vol. 42, no. 10, p. 1018.

    Article  CAS  Google Scholar 

  32. Gao, M.R., et al., Chem. Soc. Rev., 2013, vol. 42, no. 7, p. 2986.

    Article  CAS  PubMed  Google Scholar 

  33. Zdorovets, M.V., et al., J. Mater. Sci.: Mater. Electron., 2018, vol. 29, no. 5, p. 3621.

    CAS  Google Scholar 

  34. Kadyrzhanov, D.B., et al., Mater. Res. Express, 2017, vol. 4, no. 12, p. 125 023.

    Article  CAS  Google Scholar 

  35. Zdorovets, M.V., et al., J. Phys.: Condens. Matter, 2018, vol. 30, no. 12, p. 125 301.

    Google Scholar 

  36. Shlimas, D.I., et al., High Energy Chem., 2017, vol. 51, no. 1, p. 11.

    Article  CAS  Google Scholar 

  37. Andrievski, R.A. and Glezer, A.M., Scr. Mater., 2001, vol. 44, nos. 8–9, p. 1621.

    Article  CAS  Google Scholar 

  38. Andrievski, R.A. and Glezer, A.M., Phys.-Usp., 2009, vol. 52, no. 4, p. 315.

    Article  CAS  Google Scholar 

  39. Ilyin, A.M., Daineko, E.A., and Beall, G.W., Physica E (Amsterdam), 2009, vol. 42, no. 1, p. 67.

    Article  CAS  Google Scholar 

  40. Komarov, F.F., et al., J. Appl. Spectrosc., 2017, vol. 83, no. 6, p. 959.

    Article  CAS  Google Scholar 

  41. Li, W., et al., Nano Res., 2014, vol. 7, no. 11, p. 1691.

    Article  CAS  Google Scholar 

  42. Komarov, F.F., Phys.-Usp., 2003, vol. 46, no. 12, p. 1253.

    Article  CAS  Google Scholar 

  43. Lindhard, J. and Scharff, M., Phys. Rev., 1961, vol. 124, no. 1, p. 128.

    Article  CAS  Google Scholar 

  44. Lindhard, J., et al., Vidensk. Selsk., 1963, vol. 33, no. 10, p. 1.

    Google Scholar 

  45. Chauhan, R.P., et al., Radiat. Eff. Defects Solids, 2013, vol. 168, nos 7-8, p. 484.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kozlovskii.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlovskii, A.L., Zdorovets, M.V. Study of Defect Formation Processes in Zinc Nanostructures under Ion Beam Irradiation. High Energy Chem 54, 102–110 (2020). https://doi.org/10.1134/S0018143920020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920020113

Keywords:

Navigation