Skip to main content
Log in

Granulated Graphene Oxide/Titanium Dioxide Composite Aerogel as a High-Performance Photocatalyst

  • PHOTOCATALYSIS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A composite photocatalyst based on graphene oxide and titanium dioxide has been developed and tested. The catalyst has been obtained as an aerogel, which consisted of granules (spheres and hemispheres) with a diameter of 4–6 mm. This form of catalyst has been proved more convenient for use in comparison with powder photocatalysts from a technological point of view. The resulting composites have shown high photocatalytic properties exemplified by photodegradation of the basic dyes methyl violet and methylene blue in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Guoa, Q., Zhang, Q., Wang, H., and Zhao, Z., Catal. Commun., 2018, vol. 103, p. 24.

    Article  Google Scholar 

  2. Chen, X., Wu, Z., Liu, D., and Gao, Z., Nanoscale Res. Lett., 2017, vol. 12, p. 143.

    Article  Google Scholar 

  3. Cheng, L., Xiang, Q., Liao, Y., and Zhang, H., Energy Environ. Sci., 2018, vol. 11, p. 1362.

    Article  CAS  Google Scholar 

  4. Korala, S., Germain, J.R., Chen, E., Pala, I.R., Li, D., and Brock, S.L., Inorg. Chem. Front., 2017, vol. 4, no. 9, p. 1451.

    Article  CAS  Google Scholar 

  5. Hu, G.X. and Tang, B., Mater. Chem. Phys., 2013, vol. 138, p. 608.

    Article  CAS  Google Scholar 

  6. Fuentes, G.G., Elizalde, E., Yubero, F., and Sanz, J.M., Surf. Interface Anal., 2002, vol. 33, p. 230.

    Article  CAS  Google Scholar 

  7. Khairy, M. and Zakaria, W., Egypt. J. Chem., 2014, vol. 23, p. 419.

    Google Scholar 

  8. Zeng, Z.L., Zheng, G., Wang, X.C., He, K.H., Chen, Q.L., Yu, L., and Wang, Q.B., J. At. Mol. Sci., 2010, vol. 1, p. 177.

    Google Scholar 

  9. Zhang, X.T., Zhou, G.W., Zhang, H.Y., Wu, C.C., and Song, H.B., Transition Met.Chem., 2011, vol. 36, no. 2, p. 217.

    CAS  Google Scholar 

  10. Chowdhury, I.H., Ghosh, S., and Naskar, M.K., Ceram. Int., 2016, vol. 42, no. 2, p. 2488.

    Article  CAS  Google Scholar 

  11. Linsebigler, A.L., Lu, G., Yates, J.T., Jr., et al., Chem. Rev., 1995, vol. 95, p. 735.

    Article  CAS  Google Scholar 

  12. Yao, S., Li, J., and Shi, Z., Particuology, 2010, vol. 8, no. 3, p. 272.

    Article  CAS  Google Scholar 

  13. Martinsa, A.C., Cazetta, A.L., Pezoti, O., Souza, J.R.B., Zhang, T., Pilau, E.J., Asefa, T., and Almeida, V.C., Ceram. Int., 2017, vol. 43, p. 4411.

    Article  Google Scholar 

  14. Qi, K., Selvaraj, R., Al-Fahdi, T., Al-Kindy, S., Kim, Y., Wang, G.-C., Taie, C.-W., and Sillanpaa, M., Appl. Surf. Sci., 2016, vol. 387, p. 750.

    Article  CAS  Google Scholar 

  15. Panahian, Y., Arsalani, N., and Nasiri, R., J. Photochem. Photobiol., A, 2018, vol. 365, p. 45.

    Article  CAS  Google Scholar 

  16. Abdullahi, N., Saion, E., Shaari, A.H., Al-Hada, N.M., and Keiteb, A., PLoS One, 2015, vol. 10, no. 5, p. 0125 511.

    Article  Google Scholar 

  17. Xu, Y-J., Zhuang, Y., and Fu, X., J. Phys. Chem. C, 2010, vol. 114, no. 6, p. 2669.

    Article  CAS  Google Scholar 

  18. Balandin, A.A., Nat. Mater., 2011, vol. 10, p. 569.

    Article  CAS  Google Scholar 

  19. Zhang, L.W., Fu, H.B., and Zhu, Y.F., Adv. Funct. Mater., 2008, vol. 18, no. 15, p. 2180.

    Article  CAS  Google Scholar 

  20. Zhang, X.Y., Li, H.P., Cui, X.L., and Lin, Y.H., J. Mater. Chem., 2010, vol. 20, p. 2801.

    Article  CAS  Google Scholar 

  21. Bai, X.J., Wang, L., Zong, R.L., Lv, Y.L., Sun, Y.Q., and Zhu, Y.F., Langmuir, 2013, vol. 29, no. 9, p. 3097.

    Article  CAS  Google Scholar 

  22. Kalyanasundaram, K., Borgarello, E., and Grautzel, M., Helv. Chim. Acta, 1981, vol. 64, no. 1, p. 362.

    Article  CAS  Google Scholar 

  23. Boroski, M., Rodrigues, A.C., Garcia, J.C., Sampaio, L.S., Nozaki, J., and Hioka, N., J. Hazard. Mater., 2009, vol. 162, p. 448.

    Article  CAS  Google Scholar 

  24. Al-Ekabi, H. and Serpone, N., J. Phys. Chem., 1988, vol. 92, no. 20, p. 5726.

    Article  CAS  Google Scholar 

  25. Wang, X.H., Li, J.-G., Kamiyama, H., Moriyoshi, Y., and Ishigaki, T., J. Phys. Chem. B, vol. 110, no. 13, p. 6804.

  26. Yang, S., Xu, Y., Huang, Y., Zhou, G., Yang, Z., Yang, Y., and Wang, G., Int. J. Photoenergy, vol. 2013, article ID 191340.

  27. Ahmad, S. and Ashraf, A., Int. J. Chem. Stud., 2016, vol. 4, no. 5, p. 98.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-43-500093, and the state task of the Russian Federation (state registration no. 0089-2019-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Baskakov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, S.A., Baskakova, Y.V. Granulated Graphene Oxide/Titanium Dioxide Composite Aerogel as a High-Performance Photocatalyst. High Energy Chem 54, 95–101 (2020). https://doi.org/10.1134/S0018143920020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920020022

Keywords:

Navigation