Skip to main content
Log in

Formation of Singlet Oxygen during Thermal Degradation of Hydrotrioxides of Triorganosilanes

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The yield of singlet oxygen (1O2) due to the degradation of triethylsilane, dimethylphenylsilane, triphenylsilane, and dimethyl(trimethylsiloxy)silane hydrotrioxides has been determined for the first time using the IR chemiluminescence technique. The most effective sources of singlet oxygen in this series are triphenylsilyl hydrotrioxide and dimethyl(trimethylsiloxy)silyl hydrotrioxide. The yield of 1O2 upon their degradation is 69 and 92%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Miyata, Sh., Yamada, T., Isozaki, T., Sugimura, H., Xu, Ya.-Z., and Suzuki, T., Photochem. Photobiol., 2018, vol. 94, no. 4, p. 677. https://doi.org/10.1111/php.12900

    Article  CAS  PubMed  Google Scholar 

  2. Westberg, M., Bregnhøj, M., and Etzerodt Ogilby, P.R., J. Phys. Chem. B, 2017, vol. 121, no. 12, p. 2561. https://doi.org/10.1021/acs.jpcb.7b00561

    Article  CAS  PubMed  Google Scholar 

  3. Solovieva, A.O., Kirakci, K., Ivanov, A.A., Kubát, P., Pozmogova, T.N., Miroshnichenko, S.M., Vorontsova, E.V., Chechushkov, A.V., Trifonova, K.E., Fufaeva, M.S., Kretov, E.I., Mironov, Yu.V., Poveshchenko, A.F., Lang, K., and Shestopalov, M.A., Inorg. Chem., 2017, vol. 56, no. 21, p. 13491. https://doi.org/10.1021/acs.inorgchem.7b02212

    Article  CAS  PubMed  Google Scholar 

  4. Prado, F.M., Oliveira, M.C.B., Miyamoto, S., Martinez, G.R., Medeiros, M.H.G., Ronsein, G.E., and Di Mascio, P., Free Radical Biol. Med., 2009, vol. 47, no. 4, p. 401. https://doi.org/10.1016/j.freeradbiomed.2009.05.001

    Article  CAS  Google Scholar 

  5. Fudickar, W. and Linker, T., Org. Chem., 2017, vol. 82, no. 17, p. 9258. https://doi.org/10.1021/acs.joc.7b01765

    Article  CAS  Google Scholar 

  6. Jary, W.G., Ganglberger, T., Pöchlauer, P., and Falk, H., Monatsh. Chem., 2005, vol. 136, no. 4, p. 537. https://doi.org/10.1007/s00706-004-0251-1

    Article  CAS  Google Scholar 

  7. Cominade, A., Khatib, F., and Koenig, M., Can. J. Chem., 1985, vol. 63, p. 3203.

    Article  Google Scholar 

  8. Ouellette, R.J. and Marks, D.L., J. Organomet. Chem., 1968, vol. 11, p. 407.

    Article  CAS  Google Scholar 

  9. Spialter, L., Pazdernik, L., Bernstein, S., Swansiger, W.A., Buell, G.R., and Freeburger, M.E., Adv. Chem. Ser., 1972, vol. 112, p. 65.

    Article  CAS  Google Scholar 

  10. De Meijere, A. and Wolf, F., Methoden der organische Chemie, Kropf, H., Ed., Stuttgart: Wiley, 1988, E13 Teil 1, p. 971.

  11. Plesničar, B., Organic Polyoxides, Ando, W., Ed., Chichester: Wiley, 1992, p. 479.

    Google Scholar 

  12. Plesničar, B., Cerkovnik, J., Koller, J., and Kovač, F., J. Am. Chem. Soc., 1991, vol. 113, no. 13, p. 4946. https://doi.org/10.1021/ja00013a034

    Article  Google Scholar 

  13. Cerkovnik, J., Tuttle, T., Kraka, E., Lendero, N., Plesničar, B., and Cremer, D., J. Am. Chem. Soc., 2006, vol. 128, no. 12, p. 4090. https://doi.org/10.1021/ja058065v

    Article  CAS  PubMed  Google Scholar 

  14. Corey, M.E.J., Mehrotra, M., and Khan, A.U., J. Am. Chem. Soc., 1986, vol. 108, no. 9, p. 2472. https://doi.org/10.1021/ja00269a070

    Article  CAS  PubMed  Google Scholar 

  15. Wu, H., Song, Q., Ran, G., Lu, X., and Xu, B., Trends Anal. Chem., 2011, vol. 30, no. 1, p. 133. https://doi.org/10.1016/j.trac.2010.08.009

    Article  CAS  Google Scholar 

  16. Bregnhøj, M., Westberg, M., Minaev, B.F., and Ogilby, P.R., Acc. Chem. Res., 2017, vol. 50, no. 8, p. 1920. https://doi.org/10.1021/acs.accounts.7b00169

    Article  CAS  PubMed  Google Scholar 

  17. Khalitova, L.R., Antipin, A.V., Grabovskii, S.A., and Kabal’nova, N.N., High Energy Chem., 2018, vol. 52, no. 5, p. 446.

    Article  CAS  Google Scholar 

  18. Vendillo, V.P. and Emel’janov, Yu.M., Zavod. Lab. (USSR), 1959, p. 1401.

  19. Thompson, Q., J. Am. Chem. Soc., 1961, vol. 83, no. 4, p. 845. https://doi.org/10.1021/ja01465a027

    Article  CAS  Google Scholar 

  20. Khursan, S.L., Khalizov, A.F., Avzyanova, E.V., Yakupov, M.Z., and Shereshovets, V.V., Russ. J. Phys. Chem., 2001, vol. 75, no. 7, p. 1107.

    Google Scholar 

  21. Koenig, M., Barrau, J., and Hamida, N.B., J. Organomet. Chem., 1988, vol. 356, p. 133.

    Article  CAS  Google Scholar 

  22. Shereshovets, V.V., Khursan, S.L., Komissarov, V.D., and Tolstikov, G.A., Usp. Khim., 2001, vol. 70, no. 2, p. 123.

    Article  Google Scholar 

  23. Avzyanova, E.V., Timerghazin, Q.K., Khalizov, A.F., Khursan, S.L., Spirikhin, L.V., and Shereshovets, V.V., J. Phys. Org. Chem., 2000, vol. 13, no. 2, p. 87.

    Article  CAS  Google Scholar 

  24. Khursan, S.L., PATAI’s Chemistry of Functional Groups: The Chemistry of Peroxides, Greer, A. and Liebman, J.F., Eds., Chichester: Wiley, 2014, vol. 3, part 2, p. 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Grabovskii.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalitova, L.R., Grabovskii, S.A. & Kabal’nova, N.N. Formation of Singlet Oxygen during Thermal Degradation of Hydrotrioxides of Triorganosilanes. High Energy Chem 53, 435–437 (2019). https://doi.org/10.1134/S0018143919060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919060109

Keywords:

Navigation