Skip to main content
Log in

Influence of Synthesis Conditions on the Lifetime of Excess Charge Carriers in Monograin Powders with Kesterite Structure

  • PHOTONICS
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

By solid-phase synthesis, macrocrystalline Cu2 − δZn2 − xSnxS4 − ySey monograin powders have been prepared, the chemical composition of which was shown by XRD and Raman spectroscopy to be different in powder fractions of different sizes formed during the synthesis. The influence of synthesis conditions on the decay kinetics of photogenerated charge carriers in different fractions has been studied using the frequency–time-resolved microwave photoconductivity method. The characteristic photoresponse half-life, τ1/2, increased with increasing grain size. The smallest values of the lifetime were observed for the fraction with sizes of 50–70 μm (τ1/2 <5 ns), and the largest values were for the fraction with a grain size of 70–90 μm (τ1/2 ~ 12 ns).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Novikov, G.F. and Gapanovich, M.V., Usp. Fiz. Nauk, 2017, vol. 187, no. 2, p. 173.

    Article  Google Scholar 

  2. Rakitin, V.V. and Novikov, G.F., Usp. Khim., 2017, vol. 86, no. 2, p. 99.

    Article  CAS  Google Scholar 

  3. Chapin, D.M., Fuller, C.S., and Pearson, G.L., J. Appl. Phys., 1954, vol. 25, p. 676.

    Article  CAS  Google Scholar 

  4. Paradise, M.E., US Patent 2 904 613, 1957.

  5. Siebolt, T. and Velde, T., US Patent 3 480 818, 1965.

  6. Kilby, J.S. and Lathrop, J.W., US Patent 4021323, 1977.

  7. Taira, K. and Nakata, J., Nat. Photonics, 2010, vol. 4, p. 602.

    Article  CAS  Google Scholar 

  8. Meissner, D., Materials and Processes for Energy: Communicating Current Research and Technological Developments, Méndez-Vilas, A., Ed., Badajoz: Formatex Research Center, 2013, p. 126.

  9. Grossberg, M., Krustok, J., Raudoja, J., Timmo, K., Altosaar, M., and Raadik, T., Thin Solid Films, 2011, vol. 519, p. 7403.

    Article  CAS  Google Scholar 

  10. Grossberg, M., Krustok, J., Timmo, K., and Altosaar, M., Thin Solid Films, 2009, vol. 517, p. 2489.

    Article  CAS  Google Scholar 

  11. Grossberg, M., Krustok, J., Raudoja, J., and Raadik, T., Appl. Phys. Lett., 2012, vol. 101, p. 102102.

    Article  Google Scholar 

  12. Chen, S., Yang, J.H., Gong, X.G., Walsh, A., and Wei, S.H., Phys. Rev. B: Condens. Matter, 2010, vol. 81, p. 245204.

    Article  Google Scholar 

  13. Chen, S., Wang, L.W., Walsh, A., Gong, X.G., and Wei, S.H., Appl. Phys. Lett., 2012, vol. 101, p. 223901.

    Article  Google Scholar 

  14. Hones, K., Zscherpel, E., Scragg, J., and Siebentritt, S., Physica B (Amsterdam), 2009, vol. 404, p. 4949.

    Article  Google Scholar 

  15. Luckert, F., Hamilton, D.I., Yakushev, M.V., Beattie, N.S., Zoppi, G., et al., Appl. Phys. Lett., 2011, vol. 99, p. 062104.

    Article  Google Scholar 

  16. Gapanovich, M.V., Agapkin, M.D., Odin, I.N., Rakitin, V.V., Sedlovets, D.M., et al., Inorg. Mater., 2018, vol. 54, no. 8, p. 760.

    Article  CAS  Google Scholar 

  17. Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, Ito, K., Ed., Chichester: Wiley, 2015.

    Google Scholar 

  18. Rabenok, E.V., Golovanov, B.I., and Novikov, G.F., High Energy Chem., 2019, vol. 53, no. 5, p. 418.

    Article  Google Scholar 

  19. Repins, I.L., Metzger, W.K., Perkins, C.L., Li, J.V., and Contreras, M.A., Proceedings of 34th IEEE Photovoltaic Specialists Conference (PVSC) (Philadelphia, Pennsylvania, USA 2009), p. 000978.

  20. Sakurai, T., Taguchi, K., Islam, M.M., Ishizuka, S., Yamada, A., et al., Jpn. J. Appl. Phys., 2011, vol. 50, p. FC01.

    Google Scholar 

  21. Novikov, G.F., Marinin, A.A., and Rabenok, E.V., Instrum. Exp. Tech., 2010, no. 2, p. 233.

  22. Novikov, G.F., J. Renew. Sust. Energy, 2015, vol. 7, p. 011204.

    Article  Google Scholar 

  23. Nagaoka, A., Yoshino, K., Taniguchi, H., et al., J. Cryst. Growth, 2014, vol. 386, p. 204.

    Article  CAS  Google Scholar 

  24. Novikov, G.F., Rabenok, E.V., Orishina, P.S., Gapanovich, M.V., and Odin, I.N., Semiconductors, 2019, vol. 53, no. 3, p. 304.

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out using a USF “Unique scientific facility for measuring the photogenerated carrier lifetimes by the microwave photoconductivity method in the frequency range of 36 GHz” and instrumentation of the Shared Use Center at the Institute of Problems of Chemical Physics, Russian Academy of Sciences, and supported by the Ministry of Education and Science of the Russian Federation, contract No. 14.613.21.0065 (unique project identifier RFMEFI61317X0065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gapanovich, M.V., Varseev, D.N., Rabenok, E.V. et al. Influence of Synthesis Conditions on the Lifetime of Excess Charge Carriers in Monograin Powders with Kesterite Structure. High Energy Chem 53, 429–434 (2019). https://doi.org/10.1134/S0018143919060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919060079

Keywords:

Navigation