Fabrication of High-Aspect-Ratio Microstructures on Tetraacrylate/Acrylamide Monomers Using Synchrotron Radiation

Abstract

Photopolymer materials based on new polyacryl monomers of acrylate and mixed acrylate–acrylamide types have been obtained. Crosslinked films based on the synthesized monomers have been prepared by photopolymerization, and the thermomechanical properties of the crosslinked films have been studied. The storage modulus of the photopolymer films were determined at room temperature (1.3 and 1.5 GPa) and the glass transition temperature (82–93°С). High-aspect-ratio microstructures have been written using synchrotron radiation (SR) at the VEPP-3 storage ring (electron energy, 2 GeV) of a LIGA station at the Budker Institute of Nuclear Physics, SB RAS. It has been revealed that a synchrotron radiation dose of 1–15 J/cm3 results in polymerization of the monomers. The dependence of the thickness of a given microstructure on the absorbed SR dose has been found, and the corresponding characteristic curve has been constructed. Microstructures with an aspect ratio of 1 : 25 have been obtained.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Goldenberg, B.G., Creation of a LIGA technology complex on the basis of the VEPP-3 synchrotron radiation source, Cand. Sci. (Engineering) Dissertation, Novosibirsk, 2011.

  2. 2

    Reznikova, E.F., Gol’denberg, B.G., Kondratyev, V.I., Kulipanov, G.N., Korolkov, V.P., and Nasyrov, R.K., Bull. Russ. Acad. Sci.: Phys., 2013, vol. 77, no. 2, p. 111.

    Article  CAS  Google Scholar 

  3. 3

    Gol’denberg, B.G., Abramskii, A.Yu., Zelinskii, A.G., Maslii, A.I., Maksimovskii, E.A., Kondrat’ev, V.I., Korol’kov, V.P., Kuper, K.E., Petrova, E.V., and Pindyurin, V.F., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2011, vol. 5, no. 1, p. 159.

    Article  CAS  Google Scholar 

  4. 4

    Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P., J. Micromech. Microeng., 1997, vol. 7, p. 121.

    Article  CAS  Google Scholar 

  5. 5

    http://www.microchem.com/Prod-SU8_KMPR. htm. Accessed February 19, 2017.

  6. 6

    Mironnikov, N.G., Korolkov, V.P., Derevyanko, D.I., and Shelkovnikov, V.V., Optoelectron. Instrum. Data Process., 2017, vol. 53, no. 5, p. 466.

    Article  Google Scholar 

  7. 7

    Trentler, T.J., Boyd, J.E., and Colvin, V.L., Chem. Mater., 2000, vol. 12, p. 1431.

    Article  CAS  Google Scholar 

  8. 8

    Belevskii, V.N., Belopushkin, S.I., and Nuzhdin, K.B., High Energy Chem., 2007, vol. 41, no. 1, p. 10.

    Article  CAS  Google Scholar 

  9. 9

    Zhansitov, A.A., Synthesis and radical polymerization of novel guanidine-containing vinyl monomers, Cand. Sci. (Chemistry) Dissertation, Nal’chik, 2011.

  10. 10

    Shelkovnikov, V.V., Ektova, L.V., Orlova, N.A., Ogneva, L.N., Derevyanko, D.I., Shundrina, I.K., Salnikov, G.E., and Yanshole, L.V., J. Mater. Sci., 2015, vol. 50, no. 23, p. 7544.

    Article  CAS  Google Scholar 

  11. 11

    Podkoscielna, B. and Worzakowska, M., J. Therm. Anal. Calorim., 2010, vol. 101, no. 1, p. 235.

    Article  CAS  Google Scholar 

  12. 12

    Loskutov, V.A. and Shelkovnikov, V.V, Russ. J. Org. Chem., 2006, vol. 42, no. 2, p. 298.

    Article  CAS  Google Scholar 

  13. 13

    Goldenberg, B.G., Lemzyakov, A.G., Nazmov, V.P., and Pindyurin, V.F., Phys. Procedia, 2016, vol. 84, p. 205.

    Article  CAS  Google Scholar 

  14. 14

    Feng, R. and Farris, R., J. Micromech. Microeng., 2003, vol. 13, p. 80.

    Article  CAS  Google Scholar 

  15. 15

    Gol’denberg, B.G., Reznikova, E.F., Lemzyakov, A.G., and Pindyurin, V.F., Optoelectron. Instrum. Data Process., 2013, vol. 49, no. 1, p. 81.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Russian Science Foundation, project nos. 18-73-00226 and 16-13-10156.

The irradiation of the samples in the course of the work was carried out using the equipment of the Center for Collective Use at the Siberian Synchrotron and Terahertz Radiation Center based on the VEPP-3 storage ring/VEPP-4M electron–positron collider/free electron laser at the Budker Institute of Nuclear Physics, supported by the Russian Ministry of Education and Science (unique project identifier RFMEFI62117X0012).

The authors are grateful to the Chemical Research Center for Collective Use at the Siberian Branch of the Russian Academy of Sciences for performing spectral and analytical measurements.

The profilometry measurements were made using the equipment of the Center for Collective Use “High-resolution spectroscopy of gases and condensed media” at the Institute of Automation and Electrometry (Siberian Branch, Russian Academy of Sciences).

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. I. Derevyanko.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Derevyanko, D.I., Orlova, N.A., Shelkovnikov, V.V. et al. Fabrication of High-Aspect-Ratio Microstructures on Tetraacrylate/Acrylamide Monomers Using Synchrotron Radiation. High Energy Chem 53, 136–142 (2019). https://doi.org/10.1134/S0018143919020048

Download citation

Keywords:

  • acrylate monomers
  • acrylamide monomers
  • polymerization
  • X-ray lithography
  • X-ray resist