Skip to main content
Log in

The Effect of Modification by Direct-Current Discharge on the Surface Properties, Chemical Structure, and Morphology of Poly(ethylene terephtalate) Films

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The contact properties, chemical structure and surface morphology of poly(ethylene terephthalate) films modified by direct-current discharge at the cathode and anode have been studied. A substantial improvement in wettability and an increase in total surface energy and its polar term, which are retained upon storage in air at ambient conditions, have been shown. The change in the chemical structure of the plasma-modified films has been studied by X-ray photoelectron spectroscopy, and the formation of a significant amount of oxygen-containing groups on the surface has been demonstrated. The investigation of the modified films by atomic force microscopy and scanning electron microscopy has provided revealed a change in morphology of the surface and an increase in its roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Pak, V.M. and Trubachev, S.G., Novye materialy i sistemy izolyatsii vysokovol’tnykh elektricheskikh mashin (Novel Insulation Materials and Systems for High-Voltage Electrical Machines), Moscow: Energoatomizdat, 2007.

  2. Drachev, A.I., Pak, V.M., Gilman, A.B., and Kuznetsov, A.A., Elektrotekhnika, 2002, no. 4, p. 19.

  3. Drachev, A.I., Pak, V.M., Gilman, A.B., and Kuznetsov, A.A., Elektrotekhnika, 2003, no. 4, p. 35.

  4. Endo, T., Reddy, L., Nishikawa, H., Kaneko, S., Nakamura, Y., and Endo, K., Procedia Eng. J, 2017, vol. 171, p. 88.

    CAS  Google Scholar 

  5. De Bergalis, M., J. Fluorine Chem., 2004, vol. 125, p. 1255.

    Article  CAS  Google Scholar 

  6. Vesel, A. and Mozetic, M., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 29, p. P.112536.

  7. Polymer Surface Modification: Relevance to Adhesion, Mittal, K.L., Ed., Utrecht: VSP, 2009.

    Google Scholar 

  8. Friedrich, J., The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design, Weinheim: Wiley–VCH, 2012.

    Book  Google Scholar 

  9. Pocius, A.V., Adhesion and Adhesive Technology, Munich: Carl Hanser, 2002, 2nd ed.

    Google Scholar 

  10. Deshmukh, R.R. and Bhat, N.V., Mater. Res. Innovat., 2003, vol. 7, no. 5, p. 283.

    Article  CAS  Google Scholar 

  11. Al-Maliki, H., Zsidai, L., Samyn, P., Szakal, Z., Keresztes, R., and Kalacska, G., Polym. Eng. Sci., 2017, p. 1002.

  12. Rezaei, F., Dickey, M.D., Bourham, M., and Hauser, P.J., Surf. Coat. Technol., 2017, vol. 309, p. 371.

    Article  CAS  Google Scholar 

  13. Drachev, A.I., Gilman, A.B., Pak, V.M., and Kuznetsov, A.A., High Energy Chem., 2002, vol. 36, no. 2, p. 116.

    Article  CAS  Google Scholar 

  14. Drachev, A.I., Gilman, A.B., Pak, V.M., and Kuznetsov, A.A., High Energy Chem., 2006, vol. 40, no. 6, p. 417.

    Article  CAS  Google Scholar 

  15. Demina, T.S., Drozdova, M.G., Yablokov, M.Y., Gaidar, A.I., Gilman, A.B., Zaytseva-Zotova, D.S., Markvicheva, E.A., Akopova, T.A., and Zelenetskii, A.N., Plasma Process. Polym., 2015, vol. 12, no. 8, p. P. 710.

  16. Wu, S., Polymer Interfaces and Adhesion, New York: Marcel Dekker, 1982, p. 152.

    Google Scholar 

  17. Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, Chichester: Wiley, 1992.

    Google Scholar 

  18. Briggs, D., Surface Analysis of Polymers by XPS and Static SIMS, Cambridge: Cambrige Univ. Press, 1998.

    Book  Google Scholar 

  19. Wade, W.L., Mammone, R.J., and Binder, M., J. Appl. Polym. Sci., 1991, vol. 43, no. 9, p. 1589.

    Article  CAS  Google Scholar 

  20. Rezaei, F., Dickey, M.D., Bourham, M., and Hauser, P.J., Surf. Coat. Technol., 2017, vol. 309, p. 371.

    Article  CAS  Google Scholar 

  21. Vesel, A., Mozetic, M., and Zalar, A., Vacuum, 2008, vol. 82, p. 248.

    Article  CAS  Google Scholar 

  22. Deshmukh, R.R. and Bhat, N.V., Mater. Res. Innovat., 2003, vol. 7, p. 283.

    Article  CAS  Google Scholar 

  23. Piskarev, M.S., Gilman, A.B., Ionov, A.M., and Kuznetsov, A.A., High Energy Chem., 2016, vol. 50, no. 2. p. 155.

    Article  CAS  Google Scholar 

  24. Yablokov, M.Yu., Sokolov, I.V., Malinovskaya, O.S., Gilman, A.B., and Kuznetsov, A.A., High Energy Chem., 2013, vol. 47, no. 1, p. 32.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation for Basic Research, project no. 18-32-00901 (XPS, AFM, and SEM studies).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Piskarev or A. B. Gilman.

Additional information

Translated by V. Makhaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskarev, M.S., Gilman, A.B., Gatin, A.K. et al. The Effect of Modification by Direct-Current Discharge on the Surface Properties, Chemical Structure, and Morphology of Poly(ethylene terephtalate) Films. High Energy Chem 53, 76–81 (2019). https://doi.org/10.1134/S0018143919010119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143919010119

Keywords:

Navigation