Skip to main content
Log in

Effect of Accelerated Protons on the Surface Properties of Polyethylene

  • Radiation Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The irradiation of low-density polyethylene with MeV protons leads to a substantial increase in surface free energy, its acid–base component, and surface polarity due to the appearance of functional groups in the surface layer, as confirmed by ATR IR and Raman spectra. It has been shown that the surface energy of the irradiated polymer depends little on the change in proton energy from 1 to 4 MeV at a fluence of 1015 proton/cm2. It has been found that the oxygen content of the irradiated polymer surface increases as a result of oxidative reactions of the radicals generated during radiolysis and the thermal stability of the polymer decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya: Tverdoe telo i polimery: Prikladnye aspekty (Modern Radiation Chemistry: Solids and Polymers: Applied Aspects), Moscow: Nauka, 1987.

    Google Scholar 

  2. Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers) Kargin, V.A., Ed., Moscow: Nauka, 1973.

    Google Scholar 

  3. Carosena, M., Giuseppe, G., and Umberto, P., Mater. Manuf. Process., 2003, vol. 18, no. 1, p. 135.

    Article  CAS  Google Scholar 

  4. Coffey, T., Urquhart, S.G., and Ade, H., J. Electron Spectrosc. Relat. Phenom., 2002, vol. 122, p. 65.

    Article  CAS  Google Scholar 

  5. Elsharkawy, E.R., Hegazi, E.M., and Abd Elmegeed, A.A., Int. J. Mater. Chem. Phys., 2015, vol. 1, no. 3, p. 384.

    Google Scholar 

  6. Tabata, Y., J. Nucl. Mater., 1985, vol. 133, p. 781.

    Article  Google Scholar 

  7. Foti, A.M., Calcagno, L., Baratta, G.A., Spinella, F., and Strazzulla, G., Radiat. Eff. Defects Solids, 1990, vol. 112, no. 3, p. 61.

    Article  CAS  Google Scholar 

  8. Ziaie, F., Anvari, F., Ghaffari, M., and Borhani, M., Nukleonika, 2005, vol. 50, no. 3, p. 125.

    CAS  Google Scholar 

  9. Qu, B. and Rarby, B., Polym. Eng. Sci., 2004, vol. 35, no. 14, p. 1161.

    Article  Google Scholar 

  10. Charlesby, A. and Woods, R.J., Eur. Polym. J., 1965, vol. 1, no. 3, p. 161.

    Article  Google Scholar 

  11. Lyons, B.J., Nature, 1962, vol. 195, p. 690.

    Article  Google Scholar 

  12. Ivanov, V.S., Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers), Leningrad: Khimiya, 1988.

    Google Scholar 

  13. Gould, A.R. and Ledbury, K.J., Proc. R. Soc. London, Ser. A, 1964, vol. 277, no. 1370, p. 348.

    Article  Google Scholar 

  14. Johnson, W.C. and Lyons, B.J., Radiat. Phys. Chem., 1995, vol. 46, nos. 4–6, p. 829.

    Article  CAS  Google Scholar 

  15. Kim, S. and Nho, Y.Ch., Controlling of Degradation Effects 9n Radiation Processing of Polymers, Vienna: IAEA, 2009.

    Google Scholar 

  16. Sviridov, D.V., Usp. Khim., 2001, vol. 71, no. 4, p. 363.

    Google Scholar 

  17. Stepanov, A.L. and Khaibullin, R.I., Rev. Adv. Mater. Sci., 2004, vol. 7, p. 108.

    CAS  Google Scholar 

  18. Allayarov, S.R., Olkhov, Yu.A., Shaimukhametova, I.F., Bogdanova, S.A., Belov, G.P., and Dixon, D.A., High Energy Chem., 2016, vol. 50, no. 5, p. 339.

    Article  CAS  Google Scholar 

  19. Ol'khov, Yu.A., Allayarov, S.R., Muntele, K.I., and Dixon, D.A., High Energy Chem., 2014, vol. 48, no. 3, p. 133.

    Article  CAS  Google Scholar 

  20. Allayarov, S.R., Olkhov, Yu.A., Muntele, C.I., Dixon, D.A., and Ila, D., High Energy Chem., 2014, vol. 48, no. 3, p. 162.

    Article  CAS  Google Scholar 

  21. Bogdanova, S.A., Shashkina, O.R., Belov, G.P., Golodkov, O.N., Barabanov, V.P., and Starostina, I.A., Polym. Sci., Ser. A., 2004, vol. 46, no. 10, p. 1054.

    Google Scholar 

  22. Baranova, N.V., Pashina, L.A., Bogdanova, S.A., and Kostochko, A.V., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, p. 2058.

    Article  CAS  Google Scholar 

  23. Bogdanova, S.A., Shashkina, O.R., Barabanov, V.P., Belov, G.P., Zaikov, G.E., and Stoyanov, O.V., Polym. Res. J., 2012, vol. 7, no. 1, p. 1.

    Google Scholar 

  24. Allayarov, S.R., Ol’khov, Yu.A., Shaimukhametova, I.F., Bogdanova, S.A., Belov, G.P., and Dixon, D.A., High Energy Chem., 2016, vol. 50, no. 5, p. 339.

    Article  CAS  Google Scholar 

  25. Berger, E.J., J. Adhes. Sci. Technol., 1990, vol. 4, no. 5, p. 373.

    Article  CAS  Google Scholar 

  26. Fowkes, F.M. Physicochemical Aspects of Polymer Surfaces, Mittal, K.L., Ed., New York: Plenum, 1983, vol. 2, p. 583.

    CAS  Google Scholar 

  27. Owens, D.K. and Wendt, R.C., J. Appl. Polym. Sci., 1969, vol. 13, p. 1740.

    Article  Google Scholar 

  28. Vijayendran, B.R., J. Appl. Polym. Sci., 1979, vol. 23, p. P. 733.

    Article  CAS  Google Scholar 

  29. Kinloch, A.J., Adhesion and Adhesives, New York: Chapman and Hall, 1987.

    Book  Google Scholar 

  30. Baltenas, R.A., Baltenene, Ya.Yu., Stinskas, A.V., and Kevjalaitis, Z.K., Modifikatsiya struktury i svoistv polimerizatsionnykh plastmass (Modification of Structure and Properties of Addition Polymerization Plastics), Sirot, A.G., Ed., Leningrad: Plastpolimer, 1981, p. 88.

  31. Starostina, I.A. and Stoyanov, O.V., Kislotno-osnovnye vzaimodeistviya i adgeziya v metall-polimernykh sistemakh (Acid–Base Interactions and Adhesion in Metal–Polymer Systems), Kazan: KGTU, 2010.

    Google Scholar 

  32. Starostina, I.A., Stoyanov, O.V., Makhrova, N.V., and Deberdeev, R.Y., Dokl. Phys. Chem., 2011, vol. 436, no. 1, p. 8.

    Article  CAS  Google Scholar 

  33. Kuptsov, A.Kh. and Zhizhin, G.N., Fur’e-KR i Fur’e-IK spektry polimerov (Fur’e-spektry kombinatsionnogo rasseyaniya i infrakrasnogo pogloshcheniya polimerov) (Fourier-Transform Raman and Fourier-Transform Infrared Absorption Spectra of Polymers), Moscow: Fizmatlit, 2001.

    Google Scholar 

  34. Tarasevich, B.N., IK spektry osnovnykh klassov organicheskikh soedinenii (IR Spectra of Main Classes of Organic Compounds), Moscow: Izd. MGU, 2012. http://www.chem.msu.su/rus/teaching/tarasevich/Tarasevich_IR_tables_29-02-2012.pdf.

    Google Scholar 

  35. Allayarov, S.R. and Dikson, D.A., High Energy Chem., 2017, vol. 51, no. 1, p. 1.

    Article  CAS  Google Scholar 

  36. Allayarov, S.R., Ol’khov, Yu.A., Shtefan, I.N., Muntele, K.I., Ila, D., and Dixon, D.A., High Energy Chem., 2012, vol. 46, no. 2, p. 84.

    Article  CAS  Google Scholar 

  37. Allayarov, S.R., Olkhov, Yu.A., Asamov, M.K., and Dixon, D.A., High Energy Chem., 2017, vol. 51, no. 5, p. 356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Allayarov.

Additional information

Original Russian Text © S.R. Allayarov, I.F. Shaimukhametova, S.A. Bogdanova, G.P. Belov, O.N. Golodkov, D.A. Dixon, 2018, published in Khimiya Vysokikh Energii, 2018, Vol. 52, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allayarov, S.R., Shaimukhametova, I.F., Bogdanova, S.A. et al. Effect of Accelerated Protons on the Surface Properties of Polyethylene. High Energy Chem 52, 294–301 (2018). https://doi.org/10.1134/S0018143918040021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143918040021

Keywords

Navigation