Skip to main content
Log in

Simulation of the Kinetics of Methane Conversion in the Presence of Water in a Barrier Discharge

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A method is proposed for the simulation of chemical kinetics in a dielectric barrier discharge (DBD) with the use of an effective rate constant of electron–molecule reaction and a simple expression for its estimation. The results of the simulation of the kinetics of methane conversion in DBD in the presence of water are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov, V.S., Okislitel’naya konversiya prirodnogo gaza (Oxidative Conversion of Natural Gas), Moscow: Krasand, 2011.

    Google Scholar 

  2. Kudryashov, S.V., Ryabov, A.Yu., and Ochered’ko, A.N., High Energy Chem., 2017, vol. 51, no. 2, p.128.

    Article  CAS  Google Scholar 

  3. Samoilovich, V.G., Gibalov, V.I., and Kozlov, K.V., Fizicheskaya khimiya bar’ernogo razryada (Physcial Chemistry of Dielectric Barrier Discharge), Moscow: Izd. MGU, 1989.

    Google Scholar 

  4. Indarto, A., Coowanitwong, N., Choi, J., Lee, H., and Song, H.K., Fuel Process. Technol., 2008, vol. 89, no. 2, p.214.

    Article  CAS  Google Scholar 

  5. Nair, S.A., Nozaki, T., and Okazaki, K., Chem. Eng. J., 2007, vol. 132, nos. 1–3, p.85.

    Article  CAS  Google Scholar 

  6. Ravasio, S. and Cavallotti, C., Chem. Eng. Sci., 2012, vol. 84, p.580.

    Article  CAS  Google Scholar 

  7. Lovascio, S., Blin-Simiand, N., Magne, L., Jorand, F., and Pasquiers, S., Plasma Chem. Plasma Process., 2015, vol. 35, no. 2, p.279.

    Article  CAS  Google Scholar 

  8. Goujard, V., Tatibouet, J.-M., and Batiot-Dupeyrat, C., Plasma Chem. Plasma Process., 2011, vol. 31, no. 2, p.315.

    Article  CAS  Google Scholar 

  9. Kovács, T., Plasma Chem. Plasma Process., 2009, vol. 30, no. 1, p.207.

    Article  Google Scholar 

  10. Istadi, I. and Amin, N.A.S., Chem. Eng. Sci., 2007, vol. 62, no. 23, p. 6568.

    Article  CAS  Google Scholar 

  11. Non-Thermal Plasma Techniques fro Pollution Control, Penetrante, B.M. and Schultheis, S.E., Eds., Berlin: Springer, 1993.

  12. Hagelaar, G.J.M. and Pitchford, L.C., Plasma Sources Sci. Technol., 2005, vol. 14, no. 4, p.722.

    Article  CAS  Google Scholar 

  13. Viehland database. http://www.lxcat.net.

  14. Janev, R.K. and Reiter, D., Phys. Plasmas, 2002, vol. 9, no. 9, p. 4071.

    Article  CAS  Google Scholar 

  15. Ianni, J.C., Kintecus v. 5.5. 2015. http://www.kintecus. com.

  16. NIST Chemical Kinetics Database. http://kinetics. nist.gov.

  17. Ianni, J.C., Atropos v.1. 2003. http://www.kintecus. com/atropos.htm.

  18. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J., J. Phys. Chem. Ref. Data, 1992, vol. 21, no. 3, p.411.

    Article  CAS  Google Scholar 

  19. Braun, W., J. Chem. Phys., 1967, vol. 46, no. 6, p. 2071.

    Article  CAS  Google Scholar 

  20. Braun, W., J. Chem. Phys., 1970, vol. 52, no. 10, p. 5131.

    Article  CAS  Google Scholar 

  21. Halberstadt, M.L. and Crump, J., J. Photochem., 1972, vol. 1, no. 4, p.295.

    Article  Google Scholar 

  22. Galland, N., Caralp, F., Hannachi, Y., Bergeat, A., and Loison, J.-C., J. Phys. Chem. A, 2003, vol. 107, no. 28, p. 5419.

    Article  CAS  Google Scholar 

  23. Tsang, W. and Hampson, R.F., Chem. Ref. Data, 1986, vol. 15, no. 3, p. 1087.

    Article  CAS  Google Scholar 

  24. Curran, H.J., Int. J. Chem. Kinet., 2006, vol. 38, no. 4, p.250.

    Article  CAS  Google Scholar 

  25. Tsang, W., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 2, p.887.

    Article  CAS  Google Scholar 

  26. Zabarnick, S., Fleming, J.W., and Lin, M.C., Symp. Combust., 1988, vol. 21, no. 1, p.713.

    Article  Google Scholar 

  27. Jasper, A.W., Klippenstein, S.J., Harding, L.B., Ruscic, B., and Jasper, A.W., J. Phys. Chem. A, 2007, vol. 111, no. 19, p. 3932.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kudryashov.

Additional information

Original Russian Text © S.V. Kudryashov, A.Yu. Ryabov, A.N. Ochered’ko, 2018, published in Khimiya Vysokikh Energii, 2018, Vol. 52, No. 2, pp. 150–153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, S.V., Ryabov, A.Y. & Ochered’ko, A.N. Simulation of the Kinetics of Methane Conversion in the Presence of Water in a Barrier Discharge. High Energy Chem 52, 167–170 (2018). https://doi.org/10.1134/S0018143918020108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143918020108

Keywords

Navigation