Skip to main content
Log in

Particular features of photochemical transformations of molecules initiated by continuous external impact

  • General Aspects of High Energy Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Photochemical transformations induced by long-term continuous exposure to light have been studied. Using the developed theory and methods for calculating photochemical processes, computer experiments have been performed and their results have been analyzed for a large number of model systems and particular reactions. The excitation process has been considered in an explicit form, and the population of energy levels in excited states by absorption of light quanta has been taken into account. It has been shown that continuous optical excitation qualitatively changes the situation in comparison with pulsed excitation: the quantum yield is not zero even at very low quantum beat frequencies. For fast reactions, the kinetics of the process is exponential; in the case of slow reactions, concentration oscillations (on the order of 25% or more) arise, which are clearly manifested in the stationary state of the molecular system. The choice of the optimal photoirradiation time is an important factor in experimental design aimed to obtain a desired amount of the product. Molecular modeling makes it possible to a priori evaluate this quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terenin, A.N., Fotonika molekul krasitelei i rodstvennykh organicheskikh soedinenii (Photonics of Dyes and Related Compounds), Leningrad Nauka, 1967.

    Google Scholar 

  2. Turro, N.J., Molecular Photochemistry, New York Benjamin, 1965.

    Google Scholar 

  3. Calvert, J.G. and Pitts, J.N., Photochemistry, New York Wiley, 1966.

    Google Scholar 

  4. Bagdasar’yan, Kh.S., Dvukhkvantovaya fotokhimiya (Two-Photon Photochemistry), Moscow Nauka, 1976.

    Google Scholar 

  5. Chibisov, A.K., Russ. Chem. Rev., 1981, vol. 50, no. 7, p. 615.

    Article  Google Scholar 

  6. Wayne, R.P., Principles and Applications of Photochemistry, Oxford Oxford Univ. Press, 1988.

    Google Scholar 

  7. Michl, J. and Bonacic-Koutecky, V., Electronic Aspects of Organic Photochemistry, New York Wiley, 1991.

    Google Scholar 

  8. Klessinger, M. and Michl, J., Excited States and Photo-Chemistry of Organic Molecules. New York: Wiley–VCH, 1995.

    Google Scholar 

  9. Surface Photochemistry, Anpo, M., Ed., New York, Wiley, 1996.

  10. Maier, G.V., Artyukhov, V.Ya., Bazyl’, O.K., Kopylova, T.N., Kuznetsova, R.T., Rib, N.R., and Sokolova, I.V., Elektronno-vozbuzhdennye sostoyaniya i fotokhimiya organicheskikh soedinenii (Electronically Excited States and Photochemistry of Organic Compounds), Novosibirsk Nauka, 1997.

    Google Scholar 

  11. Coyle, J.D., Introduction to Organic Photochemistry, New York Wiley, 1998.

    Google Scholar 

  12. Advances in Photochemistry, vol. 29, Neckers, D.C., Jenks, W.S., and Wolff, T., Eds., Hoboken, NJ, Wiley, 2007.

  13. Turro, N.J., Ramamurthy, V., and Scaiano, J.C., Principles of Molecular Photochemistry. An Introduction, Mill Valley, CA Univ. Science Books, 2009.

    Google Scholar 

  14. Wardle, B., Principles and Applications of Photochemistry, New York Wiley, 2009.

    Google Scholar 

  15. Klán, P. and Wirz, J., Photochemistry of Organic Compounds: From Concepts to Practice, Chichester Wiley, 2009.

    Book  Google Scholar 

  16. Supramolecular Photochemistry: Controlling Photochemical Processes, Ramamurthy, V. and Inoue, Y., Eds., Hoboken, NJ, Wiley, 2011.

  17. Gribov, L.A. and Baranov, V.I., Teoriya i metody rascheta molekulyarnykh protsessov: spektry, khimicheskie prevrashcheniya i molekulyarnaya logika (Theory and Methods of Calculation of Molecular Processes, Spectra, Chemical Transformations, and Molecular Logics), Moscow: KomKniga, 2006.

    Google Scholar 

  18. Gribov, L.A. and Baranov, V.I., High Energy Chem., 2010, vol. 44, no. 6, p. 462.

    Article  CAS  Google Scholar 

  19. Baranov, V.I., Gribov, L.A., Dridger, V.E., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2009, vol. 43, no. 5, p. 362.

    Article  CAS  Google Scholar 

  20. Baranov, V.I., Gribov, L.A., Dridger, V.E., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2009, vol. 43, no. 6, p. 489.

    Article  CAS  Google Scholar 

  21. Baranov, V.I., Gribov, L.A., Dridger, V.E., and Mikhailov, I.V., High Energy Chem., 2010, vol. 44, no. 3, p. 181.

    Article  CAS  Google Scholar 

  22. Baranov, V.I., Gribov, L.A., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2010, vol. 44, no. 4, p. 277.

    Article  CAS  Google Scholar 

  23. Baranov, V.I., Gribov, L.A., Iskhakov, M.Kh., and Mikhailov, I.V., High Energy Chem., 2011, vol. 45, no. 6, p. 486.

    Article  CAS  Google Scholar 

  24. Baranov, V.I., Gribov, L.A., and Pavlyuchko, A.I., Khim. Vys. Energ., 2013, vol. 47, no. 1, p. 52.

    Google Scholar 

  25. Baranov, V.I., Gribov, L.A., Mikhailov, I.V., and Poteshnaya, N.I., High Energy Chem., 2014, vol. 48, no. 1, p. 30.

    Article  CAS  Google Scholar 

  26. Baranov, V.I., Gribov, L.A., Mikhailov, I.V., and Poteshnaya, N.I., High Energy Chem., 2015, vol. 49, no. 2, p. 96.

    Article  CAS  Google Scholar 

  27. Gribov, L.A., Biophysics (Moscow), 2006, vol. 51, no. 4, p. 671.

    Article  Google Scholar 

  28. Gribov, L.A. and Baranov, V.I., Ot molekul k zhizni (From Molecules to Life), Moscow KRASAND, 2013.

    Google Scholar 

  29. Belousov, B.P., Sbornik referatov po radiatsionnoi meditsine za 1958 g. (Collection of Abstracts on Radiation Medicine for 1958), Lebedinskii, A.V., Ed., Moscow Medgiz, 1959.

  30. Zhabotinskii, A.M., Kontsentratsionnye avtokolebaniya (Concentration Autooscillations), Moscow Nauka, 1974.

    Google Scholar 

  31. Zhabotinskii, A.M., Fizicheskaya khimiya. Sovremennye problemy (Physical Chemistry: Current Problems), Kolotyrkin, Ya.M., Ed., Moscow Khimiya, 1987.

  32. Gurel, O. and Gurel, D., Types of Oscillations in Chemical Reactions, Heidelberg Springer, 1983.

    Book  Google Scholar 

  33. Gribov, L.A. and Baranov, V.I., J. Appl. Spectrosc., 2005, vol. 72, no. 3, p. 344.

    Article  CAS  Google Scholar 

  34. Gribov, L.A. and Baranov, V.I., Problems of Biosphere Origin and Evolution, Galimov, E.M., Ed., New-York: Nova Science Publishers Inc., 2013, p. 27.

  35. Gribov, L.A., Baranov, V.I., and Mikhailov, I.V., Geochem. Int., 2012, vol. 50, no. 5, p. 393.

    Article  CAS  Google Scholar 

  36. Baranov, V.I., Gribov, L.A., and Elyashberg, M.E., Geochem. Int., 2013, vol. 51, no. 3, p. 231.

    Article  CAS  Google Scholar 

  37. Gribov, L.A. and Baranov, V.I., Geochem. Int., 2014, vol. 52, no. 9, p. 783.

    Article  CAS  Google Scholar 

  38. Baranov, V.I. and Gribov, L.A., Geochem. Int., 2014, vol. 52, no. 13, p. 1103.

    Article  CAS  Google Scholar 

  39. Baranov, V.I. and Gribov, L.A., High Energy Chem., 2014, vol. 48, no. 6, p. 363.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Gribov.

Additional information

Original Russian Text © V.I. Baranov, L.A. Gribov, I.V. Mikhailov, 2017, published in Khimiya Vysokikh Energii, 2017, Vol. 51, No. 4, pp. 253–260.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, V.I., Gribov, L.A. & Mikhailov, I.V. Particular features of photochemical transformations of molecules initiated by continuous external impact. High Energy Chem 51, 237–244 (2017). https://doi.org/10.1134/S0018143917040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143917040026

Keywords

Navigation