Skip to main content
Log in

Fabrication of microstructured materials based on chitosan and D,L-lactide copolymers using laser-induced microstereolithography

  • Photonics
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The graft copolymers of chitosan and oligo(D,L-lactide) obtained by solid-phase synthesis have been used as the basis of photosensitive compositions for the fabrication of three-dimensional microstructures by laser-induced stereolithography. The electronic absorption spectra of the copolymers are close to the sum of the spectra of native chitosan and polylactide, which has been chosen as a model of grafted oligolactide chains. The fundamental absorption bands of the copolymers lie in a range to 500 nm, and their contribution to the absorption intensity of a photosensitive composition based on the copolymers at second harmonic laser frequency is insignificant. Depending on the macromolecular characteristics of the copolymers, the three-dimensional crosslinking of photosensitive compositions on their basis in the course of microstructuring occurs with different efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melchels, F.P.W., Feijen, J., and Grijpma, D.W., Biomaterials, 2010, vol. 31, p.6121.

    Article  CAS  Google Scholar 

  2. Hutmacher, D.W., Biomaterials, 2000, vol. 21, p.2529.

    Article  CAS  Google Scholar 

  3. Rustamov, I.R., Dyatlov, V.A., Grebeneva, T.A., Dyatlov, A.V., Zaitsev, V.V., and Maleev, V.I., J. Mater. Chem. B, 2014, vol. 2, p. 4310.

    Article  CAS  Google Scholar 

  4. Raimondi, M.T., Eaton, S.M., Nava, M.M., Lagana, M., Cerullo, G., and Osellame, R., J. Appl. Biomater. Biomech., 2012, vol. 10, no. 1, p. P.55.

    Google Scholar 

  5. Croisier, F. and Jérõme, C., Eur. Polym. J., 2013, vol. 49, no. 4, p.780.

    Article  CAS  Google Scholar 

  6. Correa, D.S., Tayalia, P., Cosendey, G., Santos, D.S., Aroca, R.F., Mazur, E., and Mendonca, C.R., J. Nanosci. Nanotechnol., 2009, vol. 9, p. 5845.

    Article  CAS  Google Scholar 

  7. Kufelt, O., El-Tamer, A., Sehring, C., Meißner, M., Schlie-Wolter, S., and Chichkov, B.N., Acta Biomater., 2015, vol. 18, p.186.

    Article  CAS  Google Scholar 

  8. Akopova, T.A., Demina, T.S., Bagratashvili, V.N., Bardakova, K.N., Novikov, M.M., Selezneva, I.I., Istomin, A.V., Svidchenko, E.A., Cherkaev, G.V., Surin, N.M., and Timashev, P.S., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 87, p. 1088.

    Article  Google Scholar 

  9. Akopova, T.A., Timashev, P.S., Demina, T.S., Bardakova, K.N., Minaev, N.V., Burdukovskii, V.F., Cherkaev, G.V., Vladimirov, L.V., Istomin, A.V., Svidchenko, E.A., Surin, N.M., and Bagratashvili, V.N., Mendeleev Commun., 2015, vol. 25, no. 4, p.280.

    Article  CAS  Google Scholar 

  10. Timashev, P.S., Demina, T.S., Minaev, N.V., Bardakova, K.N., Koroleva, A.V., Kufelt, O.A., Chichkov, B.N., Panchenko, V.Ya., Akopova, T.A., and Bagratashvili, V.N., High Energy Chem., 2015, vol. 49, no. 4, p.300.

    Article  CAS  Google Scholar 

  11. Timashev, P.S., Bardakova, K.N., Demina, T.S., Pudovkina, G.I., Novikov, M.M., Markov, M.A., Asyutin, D.S., Pimenova, L.F., Svidchenko, E.A., Ermakov, A.M., Selezneva, I.I., Popov, V.K., Konovalov, N.A., Akopova, T.A., Solov’eva, A.B., Panchenko, V.Ya., and Bagratashvili, V.N., Sovrem. Tekhnol. Med., 2015, vol. 7, no. 3, p.20.

    Article  Google Scholar 

  12. Demina, T.S., Zaytseva-Zotova, D.S., Timashev, P.S., Bagratashvili, V.N., Bardakova, K.N., Sevrin, Ch., Svidchenko, E.A., Surin, N.M., Markvicheva, E.A., Grandfils, Ch., and Akopova, T.A., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 87, p. 1088.

    Article  Google Scholar 

  13. Demina, T.S., Akopova, T.A., Vladimirov, L.V., Zelenetskii, A.N., Markvicheva, E.A., and Grandfils, Ch., Mater. Sci. Eng. C, 2016, vol. 59, p.333.

    Article  CAS  Google Scholar 

  14. Scaiano, J.C., Stamplecoskie, K.G., and Hallett-Tapley, G.L., Chem. Commun. (Camb), 2012, vol. 48, no. 40, p.4798.

    Article  CAS  Google Scholar 

  15. Kerker, J.T., Leo, A.J., and Sgaglione, N.A., Sports Med. Arthrosc., 2008, vol. 16, no. 4, p.208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Demina.

Additional information

Original Russian Text © T.S. Demina, K.N. Bardakova, E.A. Svidchenko, N.V. Minaev, G.I. Pudovkina, M.M. Novikov, D.V. Butnaru, N.M. Surin, T.A. Akopova, V.N. Bagratashvili, A.N. Zelenetskii, P.S. Timashev, 2016, published in Khimiya Vysokikh Energii, 2016, Vol. 50, No. 5, pp. 411—416.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, T.S., Bardakova, K.N., Svidchenko, E.A. et al. Fabrication of microstructured materials based on chitosan and D,L-lactide copolymers using laser-induced microstereolithography. High Energy Chem 50, 389–394 (2016). https://doi.org/10.1134/S0018143916050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143916050088

Keywords

Navigation