Skip to main content
Log in

Spectral and photochemical properties of hybrid organic—inorganic nanosystems based on CdS quantum dots and a styrylquinoline ligand

  • Photochemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of photolysis of a styrylquinoline (SQ) derivative as the photochromic ligand in organic—inorganic hybrid nanosystems (HNSs) with the core composed of CdS quantum dots (QDs) has been studied for the first time as a function of the number of ligand molecules in the HNS shell, which varied from 1 to 10. The hybrid nanosystems have been synthesized in the microwave-assisted mode according to the single-step injection-free procedure. It has been shown that high quantum yields of photoisomerization of the SQ ligand are conserved in the HNS. In the early stages of the photolysis, regardless of the number of SQ ligand molecules in the HNS shell, the kinetics obeys the equation for the photolysis of the monomolecular system (model SQ photochrome) with allowance for the absorption due to QDs as an inert shutter. During the course of long-term photolysis, the quantum dots undergo photodegradation to be completely decomposed. According to the principal component analysis data, several photoproducts with different absorption spectra are formed at the intermediate times of the HNS photolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Medintz, L. and Mattoussi, H., Phys. Chem. Chem. Phys., 2009, vol. 11, p.17.

    Article  CAS  Google Scholar 

  2. Credi, A., New J. Chem., 2012, vol. 36, p. 1925.

    Article  CAS  Google Scholar 

  3. Freeman, R. and Willner, I., Chem. Soc. Rev., 2012, vol. 41, p.4067.

    Article  CAS  Google Scholar 

  4. Avellini, T., Lincheneau, C., Vera, F., Silvi, S., and Credi, A., Coord. Chem. Rev., 2014, vol. 263—264, p. 151.

    Article  Google Scholar 

  5. Medintz, I.L., Trammell, S.A., Mattoussi, H., and Mauro J.M., J. Am. Chem. Soc. 2004, vol. 126, p. 30.

    Article  CAS  Google Scholar 

  6. Zhu, L., Zhu, M., Hurst, J.K., and Li, A.D.Q., J. Am. Chem. Soc., 2005, vol. 127, p. 8968.

    Article  CAS  Google Scholar 

  7. Erno, Z., Yildiz, I., Gorodetsky, B., Raymo, F.M., and Branda N.R., Photochem. Photobiol. Sci., 2010, vol. 9, p.249.

    Article  CAS  Google Scholar 

  8. Diaz, S.A., Menendez, G.O., Etchehon, M.H., Giordano, L., Jovin, T.M., and Jares-Erijman, E.A., ACS Nano., 2011, vol. 5, p. 2795.

    Article  CAS  Google Scholar 

  9. Algar, W.R., Kim, H., Medintz, I.L., and Hildebrandt, N., Coord. Chem. Rev., 2014, vol. 263—264, p. 65.

    Article  Google Scholar 

  10. Budyka, M.F., Chashchikhin, O.V., Gavrishova, T.N., Spirin, M.G., and Brichkin S.B., Nanotechnol. Russ., 2014, vol. 9, no. 3/4, p. 116.

    Article  CAS  Google Scholar 

  11. Budyka, M.F., Chashchikhin, O.V., and Nikulin, P.A., Nanotechnol. Russ., 2016, vol. 11, no. 1/2, p. 78.

    Article  CAS  Google Scholar 

  12. Morris-Cohen, A.J., Frederick, M.T., Cass, L.C., and Weiss, E.A., J. Am. Chem. Soc., 2011, vol. 133, p. 10146.

    Article  CAS  Google Scholar 

  13. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee V.M., High Energy Chem., 2012, vol. 46, p.309.

    Article  CAS  Google Scholar 

  14. Budyka M.F., Sadykova K.F., Gavrishova T.N., J. Photochem. Photobiol. A: Chem. 2012. V. 241. P. 38.

    Google Scholar 

  15. Gade, R. and Porada, T. J. Photochem. Photobiol. A: Chem., 1997, vol. 107, p. 27.

    Article  CAS  Google Scholar 

  16. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee V.M., High Energy Chem., 2010, vol. 44, p.404.

    Article  CAS  Google Scholar 

  17. Budyka, M.F., Potashova, N.I., Gavrishova, T.N., and Lee V.M., High Energy Chem., 2008, vol. 42, p.446.

    Article  CAS  Google Scholar 

  18. Budyka, M.F., Russ.Chem. Rev., 2012, vol. 81, p.477.

    Article  CAS  Google Scholar 

  19. Budyka, M.F., Laukhina, O.D., and Gavrishova T.N. Mendeleev Commun., 1998, vol. 8, no. 2, p. 59.

    Article  Google Scholar 

  20. Jacquemin, D., Perpete, E.A., Maurel, F., and Perrier, A., J. Phys. Chem. C, 2010, vol. 11., p. 9489.

    Article  Google Scholar 

  21. Carrillo-Carrion, C., Cardenas, S., Simonet, B.M., and Valcarcel, M., Chem. Commun., 2009, vol. 35., p. 5214.

    Article  Google Scholar 

  22. Spirin, M.G., Brichkin, S.B., and Razumov, V.F., High Energy Chem., 2015, vol. 49, p.426.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Budyka.

Additional information

Original Russian Text © M.F. Budyka, O.V. Chashchikhin, 2016, published in Khimiya Vysokikh Energii, 2016, Vol. 50, No. 5, pp. 369—375.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budyka, M.F., Chashchikhin, O.V. Spectral and photochemical properties of hybrid organic—inorganic nanosystems based on CdS quantum dots and a styrylquinoline ligand. High Energy Chem 50, 349–355 (2016). https://doi.org/10.1134/S0018143916050076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143916050076

Navigation