High Energy Chemistry

, Volume 47, Issue 6, pp 315–321 | Cite as

Femtosecond dynamics of excited-state intramolecular proton transfer in o-tosylaminobenzoic and o-acetylaminobenzoic acids

  • M. N. Khimich
  • V. A. Nadtochenko
  • F. E. Gostev
  • I. V. Shelaev
  • A. A. Titov
  • L. D. Popov
  • A. S. Burlov
  • B. M. Uzhinov
Photochemistry

Abstract

The dynamics of excited-state intramolecular proton transfer (ESIPT) and of relaxation processes in o-tosylaminobenzoic acid (TAC) and o-acetylaminobenzoic acid (AAC) have been studied by femtosecond absorption spectroscopy with a time resolution of 30 fs. The ESIPT characteristic time in the TAC dimer and monomer and in AAC monomer is 50 fs. The excited product of photoinduced proton transfer in the monomer undergoes effective radiationless deactivation with a characteristic time of 30 ps, one of the channels of which is internal rotation followed by intersystem crossing and internal conversion. The product of ESIPT in the TAC dimer deactivates preferentially into the ground state via radiative transition with a time of 291 ps. ESIPT in the AAC dimer is thermodynamically unfavorable and occurs with a low yield.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uzhinov, B.M. and Khimich, M.N., Usp. Khim., 2011, vol. 80.Google Scholar
  2. 2.
    Khimich, M.N., Gostev, F.E., Shelaev, I.V., Sarkisov, O.M., Birgen, E.A., Bolotin, B.M., and Uzhinov, B.M., High Energy Chem., 2010, vol. 44, p. 482.CrossRefGoogle Scholar
  3. 3.
    Khimich, M.N., Nadtochenko, V.A., Popov, L.D., Burlov, A.S., Ivanov, V.L., Denisov, N.N., Gostev, F.E., Shelaev, I.V., Sarkisov, O.M., and Uzhinov, B.M., High Energy Chem., 2012, vol. 46, p. 246.CrossRefGoogle Scholar
  4. 4.
    Weissberger, A., Proskauer, E.S., Riddick, J.A., and Toops, E.E., Techniques of Organic Chemistry, vol. 7: Organic Solvents. Physical Properties and Methods of Purification, New York: Interscience, 1955.Google Scholar
  5. 5.
    Melhuish, W.H., J. Phys. Chem., 1961, vol. 65, p. 229.CrossRefGoogle Scholar
  6. 6.
    Shelaev, I.V., Gostev, F.E., Mamedov, M.D., Sarkisov, O.M., Nadtochenko, V.A., Shuvalov, V.A., and Semenov, A.Yu., Biochim. Biophys. Acta, 2010, vol. 1797, p. 1410.CrossRefGoogle Scholar
  7. 7.
    Ushakov, E.N., Nadtochenko, V.A., Gro-mov, S.P., Vedernikov, A.I., Lobova, N.A., Alfimov, M.V., Gostev, F.E., Petrukhin, A.N., and Sarkisov, O.M., Chem. Phys., 2004, vol. 298, p. 251.CrossRefGoogle Scholar
  8. 8.
    Lochbrunner, S., Wurzer, A.J., and Riedle, E., J. Phys. Chem. A, 2003, vol. 107, p. 10580.CrossRefGoogle Scholar
  9. 9.
    Nemukhin, A.V., Grigorenko, B.L., and Granovskii, A.A., Vestn. Mosk. Univ., Ser. 2: Khim., 2004, vol. 45, no. 2, p. 75.Google Scholar
  10. 10.
    Granovsky, A.A., J. Chem. Phys., 2011, vol. 134, p. 214113.CrossRefGoogle Scholar
  11. 11.
    Khimich, M.N., Uzhinova, L.D., Popov, L.D., Burlov, A.S., and Uzhinov, B.M., High Energy Chem., 2013, vol. 47, p. 173.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. N. Khimich
    • 1
  • V. A. Nadtochenko
    • 2
  • F. E. Gostev
    • 2
  • I. V. Shelaev
    • 2
  • A. A. Titov
    • 2
  • L. D. Popov
    • 3
  • A. S. Burlov
    • 3
  • B. M. Uzhinov
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.South Federal UniversityRostov-on-DonRussia

Personalised recommendations