Skip to main content
Log in

Alteration in the surface properties of direct-current discharge-treated tetrafluoroethylene-vinylidene fluoride copolymer films

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

A change in the contact properties of the surface of tetrafluoroethylene-vinylidene fluoride copolymer films by a dc discharge treatment has been studied, depending on the treatment time and the discharge current. It has been shown that the treatment of the films at the anode and cathode leads to a significant decrease in the contact angle and an increase in the total surface energy and its polar term. The change in the contact properties of the plasma-modified films during storage and heating has been studied as well. The experiments have shown that the formation of polyconjugated structures and crosslinking of macromolecules take place in the film surface layer during long-term treatment at the anode (>60 s, 50 mA), processes that result in an acetone-insoluble layer. The composition and surface structure of the films have been examined by Fourier-transform IR spectroscopy and X-ray photoelectron spectroscopy. The formation of new oxygen-containing groups and double bonds on the polymer surface and crosslinking of macromolecules in the case of anode treatment have been revealed. It has been found experimentally that the discharge treatment increases the peel strength in the Scotch® 810/copolymer film system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. www.halopolymer.ru

  2. Wolak, J. and Kulek J., Acta Polym., 1991, vol. 42, no. 7, p. 304.

    Article  CAS  Google Scholar 

  3. Freimuth, H., Sinn, C., and Dettenmaier M., Polymer, 1996, vol. 37, no. 5, p. 831.

    Article  CAS  Google Scholar 

  4. Fedosov, S.N., Sergeeva, A.E., Eberle, G., and Eisenmenger W., J. Phys. D: Appl. Phys., 1996, vol. 29, no. 12, p. 3122.

    Article  CAS  Google Scholar 

  5. Kussner, B., Eberle, G., Eisenmenger, W., Fedosov, S.N., and Sergeeva A.E., J. Mater. Sci. Lett., 1997, vol. 16, no. 5, p. 368.

    Article  Google Scholar 

  6. Ameduri, B., Boutevin, B., and Kostov G., Progr. Polym. Sci., 2001, vol. 26, no. 1, p. 105.

    Article  CAS  Google Scholar 

  7. Dahiya, R., Valle, S., and Metta G., IEEE Sensors, 2008. Conference, Genova: Universita di Genova. 2008. P. 490.

    Google Scholar 

  8. Khalfin, R. and Cohen Y., in Nanotechnology, Boca Raton: Taylor & Francis, 2011, vol. 2, p. 129.

    CAS  Google Scholar 

  9. Vandencasteele, N., Fairbrother, H., and Reniers F., Plasma Process. Polym., 2005, vol. 2, no. 6, p. 493.

    Article  CAS  Google Scholar 

  10. Park, J.W. and Inagaki N., J. Appl. Polym. Sci., 2004, vol. 93, no. 3, p. 1012.

    Article  CAS  Google Scholar 

  11. Vandencasteele, N. and Reniers F., J. Electron. Spectr. Related Phenomena, 2010, vol. 178/179, p. 394.

    Article  Google Scholar 

  12. Piskarev, M.S., Batuashvili, M.R., Yablokov, M.Yu., Kechek’yan, A.S., Gil’man, A.B., and Kuznetsov A.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 4, p. 35.

    CAS  Google Scholar 

  13. Gil’man, A.B., Drachev, A.I., Kuznetsov, A.A., Lopukhova, G.V., and Potapov V.K., High Energy Chem., 1997, vol. 31, no. 2, p. 121.

    Google Scholar 

  14. Wu, S., Polymer Interfaces and Adhesion, New York: Marcel Dekker 1982, p. 152.

    Google Scholar 

  15. Rabek J.F., Experimental Methods in Polymer Chemistry, New York: Wiley, 1980.

    Google Scholar 

  16. http://srdata.nist.gov

  17. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds. New York: Wiley, 1983.

    Google Scholar 

  18. Larkin, P.J., Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Waltham: Elsevier, 2011.

    Google Scholar 

  19. Handbook of Vibrational Spectroscopy, Chalmers, J.M. and Griffiths P.R., Eds., Chichester: Wiley, 2002, vol. 3, p. 1825.

  20. Yablokov, M.Yu., Kechek’yan, A.S., Bazhenov, S.L., Gil’man, A.B., Piskarev, M.S., and Kuznetsov A.A., High Energy Chem., 2009, vol. 43, no. 6, p. 512.

    Article  CAS  Google Scholar 

  21. Wade, W.L., Mammone, R.J., and Binder M., J. Appl. Polym. Sci., 1991, vol. 43, no. 9, p. 1589.

    Article  CAS  Google Scholar 

  22. Entsiklopediya nizkotemperaturnoi plazmy. Vvodnyi tom IV (Encyclopedia of Low-Temperature Plasma: Introductory Volume IV) Fortov, V.E., Ed., Moscow: Nauka, 2000.

    Google Scholar 

  23. Ricardo A., Reactive Plasmas, Paris: SFV, 1996.

    Google Scholar 

  24. Fluoropolymers Wall, L.A., Ed., New York: Wiley, 1972.

    Google Scholar 

  25. Gurvich, L.V., Karachevtsev, G.V., Kondrat’ev, V.N., Lebedev, Yu.A., Medvedev, V.A., Potapov, V.K. and Khodeev, Yu.S., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (Chemical Bond Energies, Ionization Potentials and Electron Affinity), Moscow: Nauka, 1974.

    Google Scholar 

  26. Inagaki, N., Narushima, K., Lim, S.K., Park, Y.W., and Ikeda Y., J. Polym. Sci., Part B: Polym. Phys., 2002, vol. 40, no. 24, p. 2871.

    Article  CAS  Google Scholar 

  27. Nasef, M.M., Saidi, H., and Dahlan K.Z.M., Radiat. Phys. Chem., 2003, vol. 68, no. 5, p. 875.

    Article  CAS  Google Scholar 

  28. Batuashvili, M.R., Gil’man, A.B., Yablokov, M.Yu., Piskarev, M.S., Kechek’yan, A.S., and Kuznetsov A.A., High Energy Chem., 2011, vol. 45, no. 2, p. 152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Piskarev.

Additional information

Original Russian Text © M.S. Piskarev, A.B. Gilman, A.N. Shchegolikhin, N.A. Shmakova, M.Yu. Yablokov, A.A. Kuznetsov, 2013, published in Khimiya Vysokikh Energii, 2013, Vol. 47, No. 5, pp. 381–388.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piskarev, M.S., Gilman, A.B., Shchegolikhin, A.N. et al. Alteration in the surface properties of direct-current discharge-treated tetrafluoroethylene-vinylidene fluoride copolymer films. High Energy Chem 47, 251–257 (2013). https://doi.org/10.1134/S001814391305010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001814391305010X

Keywords

Navigation