Skip to main content
Log in

Eosin photodegradation over TiO2 modified by γ-ray irradiation

  • Photochemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

TiO2 thin films are elaborated by sol gel on glass substrates and irradiated with 60Co γ-rays. The X-ray diffraction, UV-Visible spectroscopy and transport properties are investigated. The films are nominally non stochiometric and the conductivity occurs by thermally activated hopping of lattice polaron. The oxygen vacancies induced by γ-ray irradiation at lower dose (<10 kGy) generate mixed valences Ti4+/3+, thus altering the transport properties. The photo-electrochemical characterisation is undertaken to evaluate the photo catalytic performance. The Mott-Schottky plots are characteristic of n type conduction from which a flat band potential of −0.62 V SCE and a donor density of 5 × 1017 cm−3 are determined for the most active film. The Nyquist plot exhibits a semi-circular arc whose center lies below the real axis, due to the constant phase element (CPE). The energy band diagram shows the potentiality of the films for the eosin photodegradation. 68% of initial concentration (10 mg L−1) disappears after 2 h of exposure to the solar light. TiO2 irradiated with gamma dose of 10 kGy shows the best efficiency, due to the resistance decrees and high electron mobility (25 cm2 V−1 s−1). The eosin oxidation follows a first order kinetic with a rate constant of 6 × 10−2 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brahimi, R., Bessekhouad, Y., Bouguelia, A., and Trari, M., J. Photochem. Photobiol. A: Chemistry, 2008, vol. 194, p. 173.

    Article  CAS  Google Scholar 

  2. Arshak, K., Corcoran, J., and Korostynska, O., Sensors and Actuators, 2005, vols. 123–124, p. 194.

    Google Scholar 

  3. Nho, Y.C., Park, J.S., Youn, J.K., Lim, Y.M., and Shin, J.H., Radiation Physics and Chemistry, 2009, vol. 78, p. 509.

    Article  CAS  Google Scholar 

  4. Omeiri, S., Hadjarab, B., and Trari, M., Thin Solid Films, 2011, vol. 519, p. 4277.

    Article  CAS  Google Scholar 

  5. Thapa, R., Maiti, S., Rana, T.H., Maiti, U.N., and Chattopadhyay, K.K., Journal of Molecular Catalysis. A: Chemical, 2012, vol. 363–364, p. 223.

    Article  Google Scholar 

  6. Liu, R., Liu, G., and Shi, X., Colloides and Surfaces A: Physicochem. Eng. Aspect., 2010, vol. 363, p. 35.

    Article  CAS  Google Scholar 

  7. Hon, J., Yang, X., Lv, X., Huang, M., Wang, Q., and Wang, J., Journal of Alloys and Compounds, 2012, vol. 511, p. 202.

    Article  Google Scholar 

  8. Helaili, N., Bessekhouad, Y., and Trari, M., Journal of Hazardous Materials, 2009, vol. 168, p. 484.

    Article  CAS  Google Scholar 

  9. Qin, L.Z., Liao, B., Dong, X.L., Wu, X.Y., Hou, X.G., and Liu, A.D., Nuclear Instruments and Method in Physics Research B, 2009, vol. 267, p. 1077.

    Article  CAS  Google Scholar 

  10. Hou, X.G., Gu, X.N., Hu, Y., Zang, J.F., and Lin, A.D., Nuclear Instruments and Method in Physic Research, 2006, vol. 251, p. 429.

    Article  CAS  Google Scholar 

  11. Kim, H.B., Park, D.W., Jeun, J.P., Oh, S.H., Nho, Y.C., and Kang, P.H., Radiation Physics and Chemistry, 2012, vol. 81, p. 954.

    Article  CAS  Google Scholar 

  12. Bessekhouad, Y., Brahimi, R., and Trari, M., Journal of Photochem. Photobiol. A: Chemistry, 2012, vol. 248, p. 15.

    Article  CAS  Google Scholar 

  13. Brahimi, R., Bessekhouad, Y., and Trari, M., Physica, 2012, vol. B 407, p. 3897.

    Google Scholar 

  14. Beydoim, D. and Amal, R., Mater. Science and Eng., 2002, vol. B 94, p. 71.

    Article  Google Scholar 

  15. Hou, X. and Liu, A., Front Chem. China, 2007, vol. 2, no. 4, p. 387.

    Article  Google Scholar 

  16. Nowotny, M.K., Bogdanoff, P., Dttrich, T., Fiechter, S., Fujishima, A., and Tributch, H., J. Mater. Lett., 2010, vol. 64, p. 928.

    Article  CAS  Google Scholar 

  17. Kongsuebchart, W., Praserthdam, P., Panpranot, J., Sirisuk, A., Supphasrirongjaroen, P., and Satayaprasert, C., Journal of Crystal Growth, 2006, vol. 297, p. 234.

    Article  CAS  Google Scholar 

  18. Suriye, K., Praserthdam, P., and Jongsomjit, B., Applied Surface. Science, 2007, vol. 253, p. 3849.

    Article  CAS  Google Scholar 

  19. Chhor, K., Bocqet, J.F., and Colbeau-Justin, C., Materials Chemistry and Physics, 2004, vol. 86, p. 123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hazem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazem, R., Doulache, M., Izerrouken, M. et al. Eosin photodegradation over TiO2 modified by γ-ray irradiation. High Energy Chem 47, 216–223 (2013). https://doi.org/10.1134/S0018143913050044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143913050044

Keywords

Navigation